Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nuria Lopez-Bigas is active.

Publication


Featured researches published by Nuria Lopez-Bigas.


Nucleic Acids Research | 2005

Expansion of the BioCyc collection of pathway/genome databases to 160 genomes

Peter D. Karp; Christos A. Ouzounis; Caroline Moore-Kochlacs; Leon Goldovsky; Pallavi Kaipa; Dag Ahrén; Sophia Tsoka; Nikos Darzentas; Victor Kunin; Nuria Lopez-Bigas

The BioCyc database collection is a set of 160 pathway/genome databases (PGDBs) for most eukaryotic and prokaryotic species whose genomes have been completely sequenced to date. Each PGDB in the BioCyc collection describes the genome and predicted metabolic network of a single organism, inferred from the MetaCyc database, which is a reference source on metabolic pathways from multiple organisms. In addition, each bacterial PGDB includes predicted operons for the corresponding species. The BioCyc collection provides a unique resource for computational systems biology, namely global and comparative analyses of genomes and metabolic networks, and a supplement to the BioCyc resource of curated PGDBs. The Omics viewer available through the BioCyc website allows scientists to visualize combinations of gene expression, proteomics and metabolomics data on the metabolic maps of these organisms. This paper discusses the computational methodology by which the BioCyc collection has been expanded, and presents an aggregate analysis of the collection that includes the range of number of pathways present in these organisms, and the most frequently observed pathways. We seek scientists to adopt and curate individual PGDBs within the BioCyc collection. Only by harnessing the expertise of many scientists we can hope to produce biological databases, which accurately reflect the depth and breadth of knowledge that the biomedical research community is producing.


American Journal of Human Genetics | 2011

Improving the Assessment of the Outcome of Nonsynonymous SNVs with a Consensus Deleteriousness Score, Condel

Abel Gonzalez-Perez; Nuria Lopez-Bigas

Several large ongoing initiatives that profit from next-generation sequencing technologies have driven--and in coming years will continue to drive--the emergence of long catalogs of missense single-nucleotide variants (SNVs) in the human genome. As a consequence, researchers have developed various methods and their related computational tools to classify these missense SNVs as probably deleterious or probably neutral polymorphisms. The outputs produced by each of these computational tools are of different natures and thus difficult to compare and integrate. Taking advantage of the possible complementarity between different tools might allow more accurate classifications. Here we propose an effective approach to integrating the output of some of these tools into a unified classification; this approach is based on a weighted average of the normalized scores of the individual methods (WAS). (In this paper, the approach is illustrated for the integration of five tools.) We show that this WAS outperforms each individual method in the task of classifying missense SNVs as deleterious or neutral. Furthermore, we demonstrate that this WAS can be used not only for classification purposes (deleterious versus neutral mutation) but also as an indicator of the impact of the mutation on the functionality of the mutant protein. In other words, it may be used as a deleteriousness score of missense SNVs. Therefore, we recommend the use of this WAS as a consensus deleteriousness score of missense mutations (Condel).


Nature Genetics | 1999

Mutations in GJB6 cause nonsyndromic autosomal dominant deafness at DFNA3 locus.

Anna Grifa; Carsten A. Wagner; Lucrezia D'Ambrosio; Salvatore Melchionda; Francesco Bernardi; Nuria Lopez-Bigas; Raquel Rabionet; Mariona Arbones; Matteo Della Monica; Xavier Estivill; Leopoldo Zelante; Florian Lang; Paolo Gasparini

factors1. Mutations in the connexin26 gene (GJB2), located on 13q12, are responsible for non-syndromic recessive and dominant forms of deafness2–4. Connexin-31 and connexin-32 have also been implicated in deafness5,6. The identification of deaf families linked to 13q12 but negative for mutations in GJB2 (ref. 7) suggested the presence of other deafness genes in this region. Recently, the mouse connexin-30 gene (Gjb6), which is expressed in cochlea, has been mapped to a region with syntenic homology to human chromosome 13q12 (refs 8,9). To verify if human GJB6 is involved in deafness, we cloned a 1,799-bp cDNA fragment containing an ORF of 261 amino acids (EMBL HSA005585). CX30 protein has a structure similar to that of other connexins10 and shares 93% homology with mouse Cx30 and 76% identity with human CX26. GJB6 is not interrupted by introns and maps to chromosome 13q12, approximately 800 kb centromeric to GJB2. SSCP mutational analysis in 198 deaf patients, including 38 families linked to 13q12, revealed a threonine-to-methionine change at position 5 (T5M) in an Italian family affected by bilateral middle/ high-frequency hearing loss (Fig. 1a–c). Audiograms in T5M family members showed a 20–50-dB decrease at frequencies of 2,000–8,000 Hz (I-2), a progressive impaired threshold above 500 Hz (II-1) and a profound sensorineural deafness (II-2). This variability of hearing impairment can be explained by a different expressivity of the disease, which is almost the rule for dominant deafness. Northern blots, RT-PCR and in situ hybridization on mouse embryos revealed Gjb6 expression in trachea, thyroid, thymus, brain and cochlea, confirming reported expression patterns (refs 8,9,11). The threonine residue at position 5 is evolutionarily conserved and also present in human connexin 26 (Fig. 1d). The T5M substitution abolishes a hydrophilic residue possibly involved in interor Mutations in GJB6 cause nonsyndromic autosomal dominant deafness at DFNA3 locus correspondence


Scientific Reports | 2013

Comprehensive identification of mutational cancer driver genes across 12 tumor types.

David Tamborero; Abel Gonzalez-Perez; Christian Perez-Llamas; Jordi Deu-Pons; Cyriac Kandoth; Jüri Reimand; Michael S. Lawrence; Gad Getz; Gary D. Bader; Li Ding; Nuria Lopez-Bigas

With the ability to fully sequence tumor genomes/exomes, the quest for cancer driver genes can now be undertaken in an unbiased manner. However, obtaining a complete catalog of cancer genes is difficult due to the heterogeneous molecular nature of the disease and the limitations of available computational methods. Here we show that the combination of complementary methods allows identifying a comprehensive and reliable list of cancer driver genes. We provide a list of 291 high-confidence cancer driver genes acting on 3,205 tumors from 12 different cancer types. Among those genes, some have not been previously identified as cancer drivers and 16 have clear preference to sustain mutations in one specific tumor type. The novel driver candidates complement our current picture of the emergence of these diseases. In summary, the catalog of driver genes and the methodology presented here open new avenues to better understand the mechanisms of tumorigenesis.


Nature Genetics | 2015

Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes

Mark D. M. Leiserson; Fabio Vandin; Hsin-Ta Wu; Jason R. Dobson; Jonathan V Eldridge; Jacob L Thomas; Alexandra Papoutsaki; Younhun Kim; Beifang Niu; Michael D. McLellan; Michael S. Lawrence; Abel Gonzalez-Perez; David Tamborero; Yuwei Cheng; Gregory A Ryslik; Nuria Lopez-Bigas; Gad Getz; Li Ding; Benjamin J. Raphael

Cancers exhibit extensive mutational heterogeneity, and the resulting long-tail phenomenon complicates the discovery of genes and pathways that are significantly mutated in cancer. We perform a pan-cancer analysis of mutated networks in 3,281 samples from 12 cancer types from The Cancer Genome Atlas (TCGA) using HotNet2, a new algorithm to find mutated subnetworks that overcomes the limitations of existing single-gene, pathway and network approaches. We identify 16 significantly mutated subnetworks that comprise well-known cancer signaling pathways as well as subnetworks with less characterized roles in cancer, including cohesin, condensin and others. Many of these subnetworks exhibit co-occurring mutations across samples. These subnetworks contain dozens of genes with rare somatic mutations across multiple cancers; many of these genes have additional evidence supporting a role in cancer. By illuminating these rare combinations of mutations, pan-cancer network analyses provide a roadmap to investigate new diagnostic and therapeutic opportunities across cancer types.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Jagged1 is the pathological link between Wnt and Notch pathways in colorectal cancer.

Verónica Rodilla; Alberto Villanueva; Antònia Obrador-Hevia; Àlex Robert-Moreno; Vanessa Fernández-Majada; Andrea Grilli; Nuria Lopez-Bigas; Nicolás Bellora; M. Mar Albà; Ferran Torres; Mireia Duñach; Xavier Sanjuan; Sara González; Thomas Gridley; Gabriel Capellá; Anna Bigas; Lluis Espinosa

Notch has been linked to β-catenin-dependent tumorigenesis; however, the mechanisms leading to Notch activation and the contribution of the Notch pathway to colorectal cancer is not yet understood. By microarray analysis, we have identified a group of genes downstream of Wnt/β-catenin (down-regulated when blocking Wnt/β-catenin) that are directly regulated by Notch (repressed by γ-secretase inhibitors and up-regulated by active Notch1 in the absence of β-catenin signaling). We demonstrate that Notch is downstream of Wnt in colorectal cancer cells through β-catenin-mediated transcriptional activation of the Notch-ligand Jagged1. Consistently, expression of activated Notch1 partially reverts the effects of blocking Wnt/β-catenin pathway in tumors implanted s.c. in nude mice. Crossing APCMin/+ with Jagged1+/Δ mice is sufficient to significantly reduce the size of the polyps arising in the APC mutant background indicating that Notch is an essential modulator of tumorigenesis induced by nuclear β-catenin. We show that this mechanism is operating in human tumors from Familial Adenomatous Polyposis patients. We conclude that Notch activation, accomplished by β-catenin-mediated up-regulation of Jagged1, is required for tumorigenesis in the intestine. The Notch-specific genetic signature is sufficient to block differentiation and promote vasculogenesis in tumors whereas proliferation depends on both pathways.


Nature | 2015

Non-coding recurrent mutations in chronic lymphocytic leukaemia.

Xose S. Puente; Sílvia Beà; Rafael Valdés-Mas; Neus Villamor; Jesús Gutiérrez-Abril; José I. Martín-Subero; Marta Munar; Carlota Rubio-Perez; Pedro Jares; Marta Aymerich; Tycho Baumann; Renée Beekman; Laura Belver; Anna Carrió; Giancarlo Castellano; Guillem Clot; Enrique Colado; Dolors Colomer; Dolors Costa; Julio Delgado; Anna Enjuanes; Xavier Estivill; Adolfo A. Ferrando; Josep Lluís Gelpí; Blanca González; S. Gonzalez; Marcos González; Marta Gut; Jesús María Hernández-Rivas; Mónica López-Guerra

Chronic lymphocytic leukaemia (CLL) is a frequent disease in which the genetic alterations determining the clinicobiological behaviour are not fully understood. Here we describe a comprehensive evaluation of the genomic landscape of 452 CLL cases and 54 patients with monoclonal B-lymphocytosis, a precursor disorder. We extend the number of CLL driver alterations, including changes in ZNF292, ZMYM3, ARID1A and PTPN11. We also identify novel recurrent mutations in non-coding regions, including the 3′ region of NOTCH1, which cause aberrant splicing events, increase NOTCH1 activity and result in a more aggressive disease. In addition, mutations in an enhancer located on chromosome 9p13 result in reduced expression of the B-cell-specific transcription factor PAX5. The accumulative number of driver alterations (0 to ≥4) discriminated between patients with differences in clinical behaviour. This study provides an integrated portrait of the CLL genomic landscape, identifies new recurrent driver mutations of the disease, and suggests clinical interventions that may improve the management of this neoplasia.


FEBS Letters | 2005

Are splicing mutations the most frequent cause of hereditary disease

Nuria Lopez-Bigas; Benjamin Audit; Christos A. Ouzounis; Genís Parra; Roderic Guigó

Disease‐causing point mutations are assumed to act predominantly through subsequent individual changes in the amino acid sequence that impair the normal function of proteins. However, point mutations can have a more dramatic effect by altering the splicing pattern of the gene. Here, we describe an approach to estimate the overall importance of splicing mutations. This approach takes into account the complete set of genes known to be involved in disease and suggest that, contrary to current assumptions, many mutations causing disease may actually be affecting the splicing pattern of the genes.


Cell | 2016

A Landscape of Pharmacogenomic Interactions in Cancer

Francesco Iorio; Theo Knijnenburg; Daniel J. Vis; Graham R. Bignell; Michael P. Menden; Michael Schubert; Nanne Aben; Emanuel Gonçalves; Syd Barthorpe; Howard Lightfoot; Thomas Cokelaer; Patricia Greninger; Ewald van Dyk; Han Chang; Heshani de Silva; Holger Heyn; Xianming Deng; Regina K. Egan; Qingsong Liu; Tatiana Mironenko; Xeni Mitropoulos; Laura Richardson; Jinhua Wang; Tinghu Zhang; Sebastian Moran; Sergi Sayols; Maryam Soleimani; David Tamborero; Nuria Lopez-Bigas; Petra Ross-Macdonald

Summary Systematic studies of cancer genomes have provided unprecedented insights into the molecular nature of cancer. Using this information to guide the development and application of therapies in the clinic is challenging. Here, we report how cancer-driven alterations identified in 11,289 tumors from 29 tissues (integrating somatic mutations, copy number alterations, DNA methylation, and gene expression) can be mapped onto 1,001 molecularly annotated human cancer cell lines and correlated with sensitivity to 265 drugs. We find that cell lines faithfully recapitulate oncogenic alterations identified in tumors, find that many of these associate with drug sensitivity/resistance, and highlight the importance of tissue lineage in mediating drug response. Logic-based modeling uncovers combinations of alterations that sensitize to drugs, while machine learning demonstrates the relative importance of different data types in predicting drug response. Our analysis and datasets are rich resources to link genotypes with cellular phenotypes and to identify therapeutic options for selected cancer sub-populations.


Human Genetics | 2000

Molecular basis of childhood deafness resulting from mutations in the GJB2 (connexin 26) gene

Raquel Rabionet; Leopoldo Zelante; Nuria Lopez-Bigas; Leonardo D'Agruma; Salvatore Melchionda; Gabriella Restagno; Maria L. Arbonés; Paolo Gasparini; Xavier Estivill

Abstract. Mutations in the GJB2 gene have been identified in many patients with childhood deafness, 35delG being the most common mutation in Caucasoid populations. We have analyzed a total of 576 families/unrelated patients with recessive or sporadic deafness from Italy and Spain, 193 of them being referred as autosomal recessive, and the other 383 as apparently sporadic cases (singletons). Of the 1152 unrelated GJB2 chromosomes analyzed from these patients, 37% had GJB2 mutations. Twenty-three different mutations were detected (1 in-frame deletion, 4 nonsense, 5 frameshift, and 13 missense mutations). Mutation 35delG was the most common, accounting for 82% of all GJB2 deafness alleles. The relative frequency of 35delG in Italy and Spain was different, representing 88% of the alleles in Italian patients and only 55% in the Spanish cases. Eight non-35delG mutations were detected more than once (V37I, E47X, 167delT, L90P, 312del14, 334delAA, R143W, and R184P), with relative frequencies ranging between 0.5 and 1.6% of the GJB2 deafness alleles. The information based on conservation of amino acid residues, coexistence with a second GJB2 mutation or absence of the mutation in non-deaf control subjects, suggests that most of these missense changes should be responsible for the deafness phenotype.

Collaboration


Dive into the Nuria Lopez-Bigas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elizaveta V. Benevolenskaya

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge