Nuria O. Núñez
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nuria O. Núñez.
Nanotechnology | 2007
Nuria O. Núñez; Manuel Ocaña
We describe a facile procedure for the synthesis of uniform lanthanide fluoride nanophosphors by homogeneous precipitation in ethylene glycol solutions containing lanthanide precursors and an ionic liquid (1-butyl, 2-methylimidazolium tetrafluoroborate). It is shown that the use of this ionic liquid as a fluoride source, an appropriate choice of the solvent and the lanthanide precursor, and the adjustment of reaction temperature, are essential to obtain uniform nanoparticles. This method is applied to the preparation of pure YF3, EuF3 and TbF3 nanoparticles as well as of Eu-doped YF3 and Tb-doped YF3. In most cases, highly uniform nanoparticles were obtained, the size of which could be tuned in the nanometer range by adjusting the nature and concentration of the starting lanthanide precursor. The luminescent properties of the synthesized materials are also evaluated.
Journal of Colloid and Interface Science | 2010
Nuria O. Núñez; Manuel Ocaña
A simple method for the synthesis of spherical LaPO(4) (monazite) particles with narrow size distribution and tailored size in the 150-500 nm range is reported. The procedure is based on a homogeneous precipitation process at low temperature (120 degrees C) from solutions containing La(3+), citrate and phosphate ions under a very restrictive set of experimental conditions, which involves the use of La nitrate, citric acid and phosphoric acid as precursors and ethylene glycol as solvent. The growth mechanism of the spheres was investigated aiming at explaining the differences in particle size and shape observed when varying the experimental conditions. The applicability of this method for the synthesis of spherical particles of other lanthanide (Ce, Tb, Eu) phosphates is also analyzed. Finally, it is shown that the developed procedure can be used to dope the lanthanum phosphate particles with lanthanide cations, which resulted in spherical phosphors as illustrated for the Eu-doped, Ce-doped and Ce, Tb codoped systems, whose luminescent properties are also evaluated.
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2015
Carlos Luna; V.H.G. Chávez; Enrique Díaz Barriga-Castro; Nuria O. Núñez; Raquel Mendoza-Reséndez
Given the upsurge of new technologies based on nanomaterials, the development of sustainable methods to obtain functional nanostructures has become an imperative task. In this matter, several recent researches have shown that the biodegradable natural antioxidants of several plant extracts can be used simultaneously as reducing and stabilizing agents in the wet chemical synthesis of metallic nanoparticles, opening new opportunities to design greener synthesis. However, the challenge of these new techniques is to produce stable colloidal nanoparticles with controlled particle uniformity, size, shape and aggregation state, in similar manner than the well-established synthetic methods. In the present work, colloidal metallic silver nanoparticles have been synthesized using silver nitrate and extracts of Illicium verum (star anise) seeds at room temperature in a facile one-step procedure. The resulting products were colloidal suspensions of two populations of silver nanoparticles, one of them with particle sizes of few nanometers and the other with particles of tens of nm. Strikingly, the variation of the AgNO3/extract weight ratio in the reaction medium yielded to the variation of the spatial distribution of the nanoparticles: high AgNO3/extract concentration ratios yielded to randomly dispersed particles, whereas for lower AgNO3/extract ratios, the biggest particles appeared coated with the finest nanoparticles. This biosynthesized colloidal system, with controlled particle aggregation states, presents plasmonic and SERS properties with potential applications in molecular sensors and nanophotonic devices.
RSC Advances | 2013
Raquel Mendoza-Reséndez; Nuria O. Núñez; Enrique Díaz Barriga-Castro; Carlos Luna
Silver-based nanostructures were prepared through reduction/oxidation reactions of aqueous silver nitrate solutions mediated by extracts of red fruits of the piquin pepper (Capsicum annuum var. aviculare) at room temperature. Detailed morphological and microstructural studies using X-ray diffraction, conventional and high-resolution transmission electron microscopy and selected area electron diffraction revealed that the product was constituted by three kinds of nanoparticles. One of them was composed of twinned metallic silver nanoparticles with a size of few nanometers. Other kind of particles was ultrafine disk-like single crystals of silver 4,4′-dimethyldiazoaminobenzene, being in our best knowledge the first time that this compound is reported in the form of nanoparticles. Both kinds of nanoparticles experienced processes of self-assembly and subsequent grain growth to form the third kind of nanoparticles. Such resulting nanostructures are monocrystalline and flattened metallic silver nanoparticles that have diameters around tens of nanometers, the [112] direction perpendicular to the particle plane, and are coated by a surface organometallic layer and residues of biomolecules. The ultraviolet-visible spectrum of the biosynthesized product showed a surface plasmon resonance (SPR) extinction band with an absorbance maximum at around 400 nm, thereby confirming the presence of fine Ag particles. Studies carried out by Fourier transform infrared spectroscopy indicated that the principal active compounds responsible of the reduction of the Ag ions are proteins and capsaicin (through the amino groups) and phenolic compounds (through hydroxyl groups).
Nanoscale | 2010
Olalla Sánchez-Sobrado; Mauricio E. Calvo; Nuria O. Núñez; Manuel Ocaña; Gabriel Lozano; Hernán Míguez
In this work, we demonstrate that optical resonators built using all-nanoparticle-based porous building blocks provide a responsive multifunctional matrix, totally different emission spectra being attained from the same embedded luminescent nanophosphors under varying environmental conditions. We show a clear correlation between modifications in the ambient surroundings, the induced changes of the resonant modes, and the resulting variations in the emission response. The method is versatile and allows nanophosphors of arbitrary shape to be integrated in the cavity. By precise control of the spectral features of the optical resonances, luminescence is strongly modulated in selected and tuneable wavelength ranges. Applications in the fields of sensing and detection are foreseen for these materials.
Nanoscale | 2016
Alberto Escudero; Carolina Carrillo-Carrión; Mikhail V. Zyuzin; Sumaira Ashraf; Raimo Hartmann; Nuria O. Núñez; Manuel Ocaña; Wolfgang J. Parak
Near-ultraviolet and visible excitable Eu- and Bi-doped NPs based on rare earth vanadates (REVO4, RE = Y, Gd) can be used for bioimaging and biosensing applications.
Nanophotonics | 2017
Alberto Escudero; Ana Isabel Becerro; Carolina Carrillo-Carrión; Nuria O. Núñez; Mikhail V. Zyuzin; Mariano Laguna; Daniel González-Mancebo; Manuel Ocaña; Wolfgang J. Parak
Abstract Rare earth based nanostructures constitute a type of functional materials widely used and studied in the recent literature. The purpose of this review is to provide a general and comprehensive overview of the current state of the art, with special focus on the commonly employed synthesis methods and functionalization strategies of rare earth based nanoparticles and on their different bioimaging and biosensing applications. The luminescent (including downconversion, upconversion and permanent luminescence) and magnetic properties of rare earth based nanoparticles, as well as their ability to absorb X-rays, will also be explained and connected with their luminescent, magnetic resonance and X-ray computed tomography bioimaging applications, respectively. This review is not only restricted to nanoparticles, and recent advances reported for in other nanostructures containing rare earths, such as metal organic frameworks and lanthanide complexes conjugated with biological structures, will also be commented on.
RSC Advances | 2014
Raquel Mendoza-Reséndez; Alberto Gómez-Treviño; Enrique Díaz Barriga-Castro; Nuria O. Núñez; Carlos Luna
The one-step preparation of silver nanoparticles and dendritic structures mediated by aqueous royal jelly solutions has been investigated for the first time. It has been found that royal jelly (RJ) is a complex organic matrix that can be simultaneously used as a reducing and stabilizing agent in the chemical synthesis of colloidal silver-based nanostructures from aqueous AgNO3 solutions, without the requirement of additional reagents or heating sources to initiate the oxidation–reduction reactions. The resulting product consisted of very fine single-crystal disks of Ag and silver 4,4′-dimethyldiazoaminobenzene (a triazenic compound). Both kinds of particles tended to coalesce and form supramolecular dendritic structures, the AgNO3/RJ weight ratio chosen in the synthesis being a key parameter to control the crystal growth and the microstructural properties of the Ag nanodisks. Data obtained from Fourier transform infrared and Raman spectroscopy analysis indicated that these nanostructures are coated by RJ biomolecules (residues of proteins and carbohydrates). In vitro biological assays showed that these nanostructures exhibit a promising enhanced antibacterial activity against both Gram-positive and Gram-negative bacteria.
CrystEngComm | 2017
Mariano Laguna; Nuria O. Núñez; Ana Isabel Becerro; Manuel Ocaña
A very simple synthesis procedure based on precipitation reactions at moderate temperature (120 °C) from solutions containing calcium nitrate and sodium molybdate, using mixed solvents (polyols and water) has been developed, which produces uniform tetragonal CaMoO4 microarchitectures with different morphologies (peanuts, cocoons, spindles and spheres) composed of self-assembled entities. The morphology and crystal size of such assemblies could be tuned by a simple change of the nature of the components of the solvent mixture or their volumetric ratio in such a mixture. All particles presented similar excitation and emission spectra arising from a charge transfer process within the MoO42− groups. The emitted light presented a bluish-green color and its intensity was higher for the spindle-type particles. This synthesis procedure was also suitable for doping peanut-like CaMoO4 architectures with Eu3+ or Dy3+ cations up to a 1% molar ratio (Ln/Ln + Ca), without altering their morphology or crystalline structure. The so prepared phosphors emitted an intense red (Eu-doped) or greenish (Dy-doped) light when excited through the MoO42− group excitation band, indicating the presence of an energy transfer process from such groups to the Ln3+ cations. Finally, a white light emitting phosphor with chromaticity coordinates x = 0.335 and y = 0.365 and a correlated color temperature of 5407 K was developed by codoping peanut-type CaMoO4 particles with suitable amounts of Dy3+ (0.35%) and Eu3+ (0.15%) cations, which could find applications in white light emitting diodes.
Dalton Transactions | 2016
Mariano Laguna; Nuria O. Núñez; V. Rodriguez; Eugenio Cantelar; Grazyna Stepien; María Luisa García; Jesús M. de la Fuente; Manuel Ocaña
A method for the synthesis of non-aggregated and highly uniform Eu3+ doped NaGd(MoO4)2 nanoparticles is reported for the first time. The obtained particles present tetragonal structure, ellipsoidal shape and their size can be varied by adjusting the experimental synthesis parameters. These nanoparticles, which were coated with citrate anions and functionalised with PLL, have also been developed in order to improve their colloidal stability in physiological medium (2-(N-morpholino)ethanesulfonic acid, MES). A study of the luminescent dynamics of the samples as a function of the Eu doping level has been conducted in order to find the optimum nanophosphors, whose magnetic relaxivity and cell viability have also been evaluated for the first time for this system, in order to assess their suitability as multifunctional probes for optical (in vitro) and magnetic bioimaging applications.