Núria Piqué
University of Barcelona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Núria Piqué.
Journal of Bacteriology | 2003
Luis Izquierdo; Núria Coderch; Núria Piqué; Emiliano Bedini; Maria Michela Corsaro; Susana Merino; Sandra Fresno; Juan M. Tomás; Miguel Regué
To determine the function of the wabG gene in the biosynthesis of the core lipopolysaccharide (LPS) of Klebsiella pneumoniae, we constructed wabG nonpolar mutants. Data obtained from the comparative chemical and structural analysis of LPS samples obtained from the wild type, the mutant strain, and the complemented mutant demonstrated that the wabG gene is involved in attachment to alpha-L-glycero-D-manno-heptopyranose II (L,D-HeppII) at the O-3 position of an alpha-D-galactopyranosyluronic acid (alpha-D-GalAp) residue. K. pneumoniae nonpolar wabG mutants were devoid of the cell-attached capsular polysaccharide but were still able to produce capsular polysaccharide. Similar results were obtained with K. pneumoniae nonpolar waaC and waaF mutants, which produce shorter LPS core molecules than do wabG mutants. Other outer core K. pneumoniae nonpolar mutants in the waa gene cluster were encapsulated. K. pneumoniae waaC, waaF, and wabG mutants were avirulent when tested in different animal models. Furthermore, these mutants were more sensitive to some hydrophobic compounds than the wild-type strains. All these characteristics were rescued by reintroduction of the waaC, waaF, and wabG genes from K. pneumoniae.
Infection and Immunity | 2004
Miguel Regué; Beatriz Hita; Núria Piqué; Luis Izquierdo; Susana Merino; Sandra Fresno; Vicente J. Benedí; Juan M. Tomás
ABSTRACT Klebsiella pneumoniae strains typically express both smooth lipopolysaccharide (LPS) with O antigen molecules and capsule polysaccharide (K antigen) on the surface. A single mutation in a gene that codes for a UDP galacturonate 4-epimerase (uge) renders a strain with the O−:K− phenotype (lack of capsule and LPS without O antigen molecules and outer core oligosaccharide). The uge gene was present in all the K. pneumoniae strains tested. The K. pneumoniae uge mutants were unable to produce experimental urinary tract infections in rats and were completely avirulent in two different animal models (septicemia and pneumonia). Reintroduction of the single uge wild-type gene in the corresponding mutants completely restored the wild-type phenotype (presence of capsule and smooth LPS) independently of the O or K serotype of the wild type. Furthermore, complemented uge mutants recovered the ability to produce experimental urinary tract infections in rats and virulence in the septicemia and pneumonia animal models.
Journal of Bacteriology | 2005
Miguel Regué; Luis Izquierdo; Sandra Fresno; Núria Piqué; Maria Michela Corsaro; Teresa Naldi; Cristina De Castro; Dietmar Waidelich; Susana Merino; Juan M. Tomás
Up to now only one major type of core oligosaccharide has been found in the lipopolysaccharide of all Klebsiella pneumoniae strains analyzed. Applying a different screening approach, we identified a novel Klebsiella pneumoniae core (type 2). Both Klebsiella core types share the same inner core and the outer-core-proximal disaccharide, GlcN-(1,4)-GalA, but they differ in the GlcN substituents. In core type 2, the GlcpN residue is substituted at the O-4 position by the disaccharide beta-Glcp(1-6)-alpha-Glcp(1, while in core type 1 the GlcpN residue is substituted at the O-6 position by either the disaccharide alpha-Hep(1-4)-alpha-Kdo(2 or a Kdo residue (Kdo is 3-deoxy-D-manno-octulosonic acid). This difference correlates with the presence of a three-gene region in the corresponding core biosynthetic clusters. Engineering of both core types by interchanging this specific region allowed studying the effect on virulence. The replacement of Klebsiella core type 1 in a highly type 2 virulent strain (52145) induces lower virulence than core type 2 in a murine infection model.
PLOS ONE | 2011
Núria Climent; Susana Guerra; Felipe García; Cristina Rovira; Laia Miralles; Carmen Elena Gómez; Núria Piqué; Cristina Gil; José M. Gatell; Mariano Esteban; Teresa Gallart
Currently, MVA virus vectors carrying HIV-1 genes are being developed as HIV-1/AIDS prophylactic/therapeutic vaccines. Nevertheless, little is known about the impact of these vectors on human dendritic cells (DC) and their capacity to present HIV-1 antigens to human HIV-specific T cells. This study aimed to characterize the interaction of MVA and MVA expressing the HIV-1 genes Env-Gag-Pol-Nef of clade B (referred to as MVA-B) in human monocyte-derived dendritic cells (MDDC) and the subsequent processes of HIV-1 antigen presentation and activation of memory HIV-1-specific T lymphocytes. For these purposes, we performed ex vivo assays with MDDC and autologous lymphocytes from asymptomatic HIV-infected patients. Infection of MDDC with MVA-B or MVA, at the optimal dose of 0.3 PFU/MDDC, induced by itself a moderate degree of maturation of MDDC, involving secretion of cytokines and chemokines (IL1-ra, IL-7, TNF-α, IL-6, IL-12, IL-15, IL-8, MCP-1, MIP-1α, MIP-1β, RANTES, IP-10, MIG, and IFN-α). MDDC infected with MVA or MVA-B and following a period of 48 h or 72 h of maturation were able to migrate toward CCL19 or CCL21 chemokine gradients. MVA-B infection induced apoptosis of the infected cells and the resulting apoptotic bodies were engulfed by the uninfected MDDC, which cross-presented HIV-1 antigens to autologous CD8+ T lymphocytes. MVA-B-infected MDDC co-cultured with autologous T lymphocytes induced a highly functional HIV-specific CD8+ T cell response including proliferation, secretion of IFN-γ, IL-2, TNF-α, MIP-1β, MIP-1α, RANTES and IL-6, and strong cytotoxic activity against autologous HIV-1-infected CD4+ T lymphocytes. These results evidence the adjuvant role of the vector itself (MVA) and support the clinical development of prophylactic and therapeutic anti-HIV vaccines based on MVA-B.
International Journal of Molecular Sciences | 2015
Núria Piqué; David Miñana-Galbis; Susana Merino; Juan M. Tomás
Erwinia amylovora, a Gram negative bacteria of the Enterobacteriaceae family, is the causal agent of fire blight, a devastating plant disease affecting a wide range of host species within Rosaceae and a major global threat to commercial apple and pear production. Among the limited number of control options currently available, prophylactic application of antibiotics during the bloom period appears the most effective. Pathogen cells enter plants through the nectarthodes of flowers and other natural openings, such as wounds, and are capable of rapid movement within plants and the establishment of systemic infections. Many virulence determinants of E. amylovora have been characterized, including the Type III secretion system (T3SS), the exopolysaccharide (EPS) amylovoran, biofilm formation, and motility. To successfully establish an infection, E. amylovora uses a complex regulatory network to sense the relevant environmental signals and coordinate the expression of early and late stage virulence factors involving two component signal transduction systems, bis-(3′-5′)-cyclic di-GMP (c-di-GMP) and quorum sensing. The LPS biosynthetic gene cluster is one of the relatively few genetic differences observed between Rubus- and Spiraeoideae-infecting genotypes of E. amylovora. Other differential factors, such as the presence and composition of an integrative conjugative element associated with the Hrp T3SS (hrp genes encoding the T3SS apparatus), have been recently described. In the present review, we present the recent findings on virulence factors research, focusing on their role in bacterial pathogenesis and indicating other virulence factors that deserve future research to characterize them.
Journal of Bacteriology | 2004
Núria Coderch; Núria Piqué; Buko Lindner; Nihal Abitiu; Susana Merino; Luis Izquierdo; Natalia Jimenez; Juan M. Tomás; Otto Holst; Miguel Regué
The gene cluster (waa) involved in Serratia marcescens N28b core lipopolysaccharide (LPS) biosynthesis was identified, cloned, and sequenced. Complementation analysis of known waa mutants from Escherichia coli K-12, Salmonella enterica, and Klebsiella pneumoniae led to the identification of five genes coding for products involved in the biosynthesis of a shared inner core structure: [L,D-HeppIIIalpha(1-->7)-L,D-HeppIIalpha(1-->3)-L,D-HeppIalpha(1-->5)-KdopI(4<--2)alphaKdopII] (L,D-Hepp, L-glycero-D-manno-heptopyranose; Kdo, 3-deoxy-D-manno-oct-2-ulosonic acid). Complementation and/or chemical analysis of several nonpolar mutants within the S. marcescens waa gene cluster suggested that in addition, three waa genes were shared by S. marcescens and K. pneumoniae, indicating that the core region of the LPS of S. marcescens and K. pneumoniae possesses additional common features. Chemical and structural analysis of the major oligosaccharide from the core region of LPS of an O-antigen-deficient mutant of S. marcescens N28b as well as complementation analysis led to the following proposed structure: beta-Glc-(1-->6)-alpha-Glc-(1-->4))-alpha-D-GlcN-(1-->4)-alpha-D-GalA-[(2<--1)-alpha-D,D-Hep-(2<--1)-alpha-Hep]-(1-->3)-alpha-L,D-Hep[(7<--1)-alpha-L,D-Hep]-(1-->3)-alpha-L,D-Hep-[(4<--1)-beta-D-Glc]-(1-->5)-Kdo. The D configuration of the beta-Glc, alpha-GclN, and alpha-GalA residues was deduced from genetic data and thus is tentative. Furthermore, other oligosaccharides were identified by ion cyclotron resonance-Fourier-transformed electrospray ionization mass spectrometry, which presumably contained in addition one residue of D-glycero-D-talo-oct-2-ulosonic acid (Ko) or of a hexuronic acid. Several ions were identified that differed from others by a mass of +80 Da, suggesting a nonstoichiometric substitution by a monophosphate residue. However, none of these molecular species could be isolated in substantial amounts and structurally analyzed. On the basis of the structure shown above and the analysis of nonpolar mutants, functions are suggested for the genes involved in core biosynthesis.
Journal of Biological Chemistry | 2005
Miguel Regué; Luis Izquierdo; Sandra Fresno; Natalia Jimenez; Núria Piqué; Maria Michela Corsaro; Michelangelo Parrilli; Teresa Naldi; Susana Merino; Juan M. Tomás
The core lipopolysaccharide (LPS) of Klebsiella pneumoniae is characterized by the presence of disaccharide αGlcN-(1,4)-αGalA attached by an α1,3 linkage to l-glycero-d-manno-heptopyranose II (ld-HeppII). Previously it has been shown that the WabH enzyme catalyzes the incorporation of GlcNAc from UDP-GlcNAc to outer core LPS. The presence of GlcNAc instead of GlcN and the lack of UDP-GlcN in bacteria indicate that an additional enzymatic step is required. In this work we identified a new gene (wabN) in the K. pneumoniae core LPS biosynthetic cluster. Chemical and structural analysis of K. pneumoniae non-polar wabN mutants showed truncated core LPS with GlcNAc instead of GlcN. In vitro assays using LPS truncated at the level of d-galacturonic acid (GalA) and cell-free extract containing WabH and WabN together led to the incorporation of GlcN, whereas none of them alone were able to do it. This result suggests that the later enzyme (WabN) catalyzes the deacetylation of the core LPS containing the GlcNAc residue. Thus, the incorporation of the GlcN residue to core LPS in K. pneumoniae requires two distinct enzymatic steps. WabN homologues are found in Serratia marcescens and some Proteus strains that show the same disaccharide αGlcN-(1,4)-αGalA attached by an α1,3 linkage to ld-HeppII.
Vaccine | 2014
Núria Climent; Séverine Munier; Núria Piqué; Felipe García; Vincent Pavot; Charlotte Primard; Víctor Casanova; José M. Gatell; Bernard Verrier; Teresa Gallart
Since recent data suggest that nanoparticles and modified vaccinia ankara (MVA) vectors could play a pivotal role in HIV-1 therapeutics and vaccine design, in an ex vivo model of human monocyte-derived dendritic cells (MDDCs), we compared two different loading strategies with HIV-1 vaccine vehicles, either viral or synthetic derived. We used polylactic acid (PLA) colloidal biodegradable particles, coated with HIV Gag antigens (p24), and MVA expressing Gag (rMVA-gag and rMVA-gag/trans membrane) or Tat, Nef and Rev genes (rMVA tat+rev and rMVA nef). PLA-p24 captured by MDDCs from HIV-1 individuals induced a slight degree of MDDC maturation, cytokine and chemokine secretion and migration towards a gradient of CCL19 chemokine and highly increased HIV-specific CD8(+) T-cell proliferation compared with p24 alone. After complete maturation induction of PLA-p24-pulsed MDDCs, maximal migration towards a gradient of CCL19 chemokine and induction of HIV-specific T-cell proliferation (two-fold higher for CD4(+) than CD8(+)) and cytokine secretion (IFN-γ and IL-2) in the co-culture were observed. Upon exposure to MVA-gag, MDDCs produced cytokines and chemokines and maintained their capacity to migrate to a gradient of CCL19. MDDCs infected with MVA-gag and MVA-gag trans-membrane were able to induce HIV-specific CD8(+) proliferation and secretion of IFN-γ, IL-2, IL-6 and TNF-α. We conclude that both HIV antigens loading strategies (PLA-p24 nanoparticles or MVA expressing HIV genes) induce HIV-1-specific T-cell responses, which are able to kill autologous gag-expressing cells. Thus, they are plausible candidates for the development of anti-HIV vaccines.
United European gastroenterology journal | 2016
Octavian Alexea; Vlad Bacarea; Núria Piqué
Background A medical device containing the film-forming agent reticulated protein and a prebiotic mixture of vegetable oligo- and polysaccharides has been developed, recently receiving European approval as MED class III for the treatment of chronic/functional or recidivant diarrhoea due to different causes including irritable bowel syndrome (IBS). In the present paper, we evaluate a protein preparation containing these components in comparison with placebo in adult patients with diarrhoea-predominant IBS. Methods In a randomised, placebo-controlled, double-blind, parallel group, multicentre clinical trial, patients were randomly assigned to receive the combination of oligo- and polysaccharides and reticulated protein and placebo (four oral tablets/day for 56 days). Demographic, clinical and quality of life characteristics and presence and intensity of abdominal pain and flatulence (seven-point Likert scale) were assessed at three study visits (baseline and at 28 and 56 days). Stool emissions were recorded on the diary card using the seven-point Bristol Stool Scale. Results A total of 128 patients were randomised to receive either tablets containing the combination (n = 63) or placebo (n = 65). Treatment with oligo- and polysaccharides and reticulated protein was safe and well tolerated. A significant improvement in symptoms across the study was observed in patients treated with oligo- and polysaccharides and reticulated protein between visit 2 and visit 3 in abdominal pain (p = 0.0167) and flatulence (p = 0.0373). We also detected a statistically significant increase in the quality of life of patients receiving the active treatment from baseline to visit 3 (p < 0.0001). Conclusions Treatment with oligo- and polysaccharides and reticulated protein is safe, improving IBS symptoms and quality of life of patients with diarrhoea-predominant IBS.
Gastroenterology Research and Practice | 2016
Cătălin Pleșea Condratovici; Vladimir Bacarea; Núria Piqué
Background. Xyloglucan, a film-forming agent, improves intestinal mucosa resistance to pathologic damage. The efficacy, safety, and time of onset of the antidiarrheal effect of xyloglucan were assessed in children with acute gastroenteritis receiving oral rehydration solution (ORS). Methods. This randomized, controlled, open-label, parallel-group, multicenter, clinical trial included children (3 months–12 years) with acute gastroenteritis of infectious origin. Children were randomized to xyloglucan and ORS, or ORS only, for 5 days. Diarrheal symptoms, including stool number/characteristics, and safety were assessed at baseline and after 2 and 5 days and by fulfillment of a parent diary card. Results. Thirty-six patients (58.33% girls) were included (n = 18/group). Patients receiving xyloglucan and ORS had better symptom evolution than ORS-only recipients, with a faster onset of action. At 6 hours, xyloglucan produced a significantly greater decrease in the number of type 7 stools (0.11 versus 0.44; P = 0.027). At days 3 and 5, xyloglucan also produced a significantly greater reduction in types 6 and 7 stools compared with ORS alone. Xyloglucan plus ORS was safe and well tolerated. Conclusions. Xyloglucan is an efficacious and safe option for the treatment of acute gastroenteritis in children, with a rapid onset of action in reducing diarrheal symptoms. This study is registered with ISRCTN number 65893282.