Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Núria S. Coll is active.

Publication


Featured researches published by Núria S. Coll.


Cell Death & Differentiation | 2011

Programmed cell death in the plant immune system

Núria S. Coll; Petra Epple; Jeffery L. Dangl

Cell death has a central role in innate immune responses in both plants and animals. Besides sharing striking convergences and similarities in the overall evolutionary organization of their innate immune systems, both plants and animals can respond to infection and pathogen recognition with programmed cell death. The fact that plant and animal pathogens have evolved strategies to subvert specific cell death modalities emphasizes the essential role of cell death during immune responses. The hypersensitive response (HR) cell death in plants displays morphological features, molecular architectures and mechanisms reminiscent of different inflammatory cell death types in animals (pyroptosis and necroptosis). In this review, we describe the molecular pathways leading to cell death during innate immune responses. Additionally, we present recently discovered caspase and caspase-like networks regulating cell death that have revealed fascinating analogies between cell death control across both kingdoms.


Science | 2010

Arabidopsis type I metacaspases control cell death

Núria S. Coll; Dominique Vercammen; Andrea Smidler; Charles Clover; Frank Van Breusegem; Jeffery L. Dangl; Petra Epple

The Yin and Yang of Plant Caspases The function of plant metacaspases, identified by limited sequence homology to the animal caspases that control cell death, has remained elusive. Coll et al. (p. 1393) have now elucidated the actions of two metacaspases in the small plant Arabidopsis. One metacaspase, AtMC1, promoted cell death, and the other, AtMC2, acted antagonistically to stall cell death. The results help to elucidate the mechanisms by which plants control cell survival during development and defend against pathogen attack. An ancient link between cell death control and innate immune receptor function has been discovered in plants. Metacaspases are distant relatives of animal caspases found in protozoa, fungi, and plants. Limited experimental data exist defining their function(s), despite their discovery by homology modeling a decade ago. We demonstrated that two type I metacaspases, AtMC1 and AtMC2, antagonistically control programmed cell death in Arabidopsis. AtMC1 is a positive regulator of cell death and requires conserved caspase-like putative catalytic residues for its function. AtMC2 negatively regulates cell death. This function is independent of the putative catalytic residues. Manipulation of the Arabidopsis type I metacaspase regulatory module can nearly eliminate the hypersensitive cell death response (HR) activated by plant intracellular immune receptors. This does not lead to enhanced pathogen proliferation, decoupling HR from restriction of pathogen growth.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Cryptochrome-1-dependent execution of programmed cell death induced by singlet oxygen in Arabidopsis thaliana

Antoine Danon; Núria S. Coll; Klaus Apel

Programmed cell death (PCD) plays an important role during the life cycle of higher organisms. Although several regulatory mechanisms governing PCD are thought to be conserved in animals and plants, light-dependent cell death represents a form of PCD that is unique to plants. The light requirement of PCD has often been associated with the production of reactive oxygen species during photosynthesis. In support of this hypothesis, hydrogen peroxide and superoxide have been shown to be involved in triggering a PCD response. In the present work, we have used the conditional flu mutant of Arabidopsis to analyze the impact of another reactive oxygen species, singlet oxygen, on cell death. Unexpectedly, the light-dependent release of singlet oxygen alone is not sufficient to induce PCD of flu seedlings but has to act together with a second concurrent blue light reaction. This blue-light-specific trigger of PCD could not be attributed to a photosynthetic reaction or redox change within the chloroplast but to the activation of the blue light/UVA-specific photoreceptor cryptochrome. The singlet oxygen-mediated and cryptochrome-dependent cell death response differs in several ways from PCD triggered by hydrogen peroxide/superoxide.


Trends in Plant Science | 2015

Plant innate immunity – sunny side up?

Simon Stael; Przemyslaw Kmiecik; Patrick Willems; Katrien Van Der Kelen; Núria S. Coll; Markus Teige; Frank Van Breusegem

Reactive oxygen species (ROS)- and calcium- dependent signaling pathways play well-established roles during plant innate immunity. Chloroplasts host major biosynthetic pathways and have central roles in energy production, redox homeostasis, and retrograde signaling. However, the organelles importance in immunity has been somehow overlooked. Recent findings suggest that the chloroplast also has an unanticipated function as a hub for ROS- and calcium-signaling that affects immunity responses at an early stage after pathogen attack. In this opinion article, we discuss a chloroplastic calcium-ROS signaling branch of plant innate immunity. We propose that this chloroplastic branch acts as a light-dependent rheostat that, through the production of ROS, influences the severity of the immune response.


Cell Death & Differentiation | 2014

The plant metacaspase AtMC1 in pathogen-triggered programmed cell death and aging: Functional linkage with autophagy

Núria S. Coll; Andrea Smidler; Marina Puigvert; Crina Popa; Marc Valls; Jeffery L. Dangl

Autophagy is a major nutrient recycling mechanism in plants. However, its functional connection with programmed cell death (PCD) is a topic of active debate and remains not well understood. Our previous studies established the plant metacaspase AtMC1 as a positive regulator of pathogen-triggered PCD. Here, we explored the linkage between plant autophagy and AtMC1 function in the context of pathogen-triggered PCD and aging. We observed that autophagy acts as a positive regulator of pathogen-triggered PCD in a parallel pathway to AtMC1. In addition, we unveiled an additional, pro-survival homeostatic function of AtMC1 in aging plants that acts in parallel to a similar pro-survival function of autophagy. This novel pro-survival role of AtMC1 may be functionally related to its prodomain-mediated aggregate localization and potential clearance, in agreement with recent findings using the single budding yeast metacaspase YCA1. We propose a unifying model whereby autophagy and AtMC1 are part of parallel pathways, both positively regulating HR cell death in young plants, when these functions are not masked by the cumulative stresses of aging, and negatively regulating senescence in older plants.


Plant Physiology | 2015

A Conserved Core of Programmed Cell Death Indicator Genes Discriminates Developmentally and Environmentally Induced Programmed Cell Death in Plants

Yadira Olvera-Carrillo; Michiel Van Bel; Tom Van Hautegem; Matyáš Fendrych; Marlies Huysmans; Mária Šimášková; Matthias Van Durme; Pierre Buscaill; Susana Rivas; Núria S. Coll; Frederik Coppens; Steven Maere; Moritz K. Nowack

Programmed cell death occurring as an integral part of plant development is characterized by the transcriptional activation of a distinct core of conserved cell death-associated genes. A plethora of diverse programmed cell death (PCD) processes has been described in living organisms. In animals and plants, different forms of PCD play crucial roles in development, immunity, and responses to the environment. While the molecular control of some animal PCD forms such as apoptosis is known in great detail, we still know comparatively little about the regulation of the diverse types of plant PCD. In part, this deficiency in molecular understanding is caused by the lack of reliable reporters to detect PCD processes. Here, we addressed this issue by using a combination of bioinformatics approaches to identify commonly regulated genes during diverse plant PCD processes in Arabidopsis (Arabidopsis thaliana). Our results indicate that the transcriptional signatures of developmentally controlled cell death are largely distinct from the ones associated with environmentally induced cell death. Moreover, different cases of developmental PCD share a set of cell death-associated genes. Most of these genes are evolutionary conserved within the green plant lineage, arguing for an evolutionary conserved core machinery of developmental PCD. Based on this information, we established an array of specific promoter-reporter lines for developmental PCD in Arabidopsis. These PCD indicators represent a powerful resource that can be used in addition to established morphological and biochemical methods to detect and analyze PCD processes in vivo and in planta.


Plant and Cell Physiology | 2009

Characterization of soldat8, a suppressor of singlet oxygen-induced cell death in Arabidopsis seedlings

Núria S. Coll; Antoine Danon; Jörg Meurer; Won Kyong Cho; Klaus Apel

The flu mutant of Arabidopsis thaliana overaccumulates in the dark the immediate precursor of chlorophyllide, protochlorophyllide (Pchlide), a potent photosensitizer, that upon illumination generates singlet oxygen ((1)O2). Once (1)O2 has been released in plastids of the flu mutant, mature plants stop growing, while seedlings die. Several suppressor mutations, dubbed singlet oxygen-linked death activator (soldat), were identified that specifically abrogate (1)O2-mediated stress responses in young flu seedlings without grossly affecting (1)O2-mediated stress responses of mature flu plants. One of the soldat mutations, soldat8, was shown to impair a gene encoding the SIGMA6 factor of the plastid RNA polymerase. Reintroduction of a wild-type copy of the SOLDAT8 gene into the soldat8/flu mutant restored the phenotype of the flu parental line. In contrast to flu, seedlings of soldat8/flu did not bleach when grown under non-permissive dark/light conditions, despite their continuous overaccumulation of the photosensitizer Pchlide in the dark. The activity of SIGMA6 is confined primarily to the very early stage of seedling development. Inactivation of SIGMA6 in soldat8 mutants disturbed plastid homeostasis, drastically reduced the non-photochemical quenching capacity and enhanced the light sensitivity of young soldat8 seedlings. Surprisingly, after being grown under very low light, soldat8 seedlings showed an enhanced resistance against a subsequent severe light stress that was significantly higher than in wild-type seedlings. In order to reach a similar enhanced stress resistance, wild-type seedlings had to be exposed to a brief higher light treatment that triggered an acclimatory response. Such a mild pre-stress treatment did not further enhance the stress resistance of soldat8 seedlings. Suppression of (1)O2-mediated cell death in young flu/soldat8 seedlings seems to be due to a transiently enhanced acclimation at the beginning of seedling development caused by the initial disturbance of plastid homeostasis.


Microbial Biotechnology | 2013

Current knowledge on the Ralstonia solanacearum type III secretion system.

Núria S. Coll; Marc Valls

Ralstonia solanacearum was ranked in a recent survey the second most important bacterial plant pathogen, following the widely used research model Pseudomonas syringae (Mansfield et al., 2012). The main reason is that bacterial wilt caused by R. solanacearum is the worlds most devastating bacterial plant disease (http://faostat.fao.org), threatening food safety in tropical and subtropical agriculture, especially in China, Bangladesh, Bolivia and Uganda (Martin and French, 1985). This is due to the unusually wide host range of the bacterium, its high persistence and because resistant crop varieties are unavailable. In addition, R. solanacearum has been established as a model bacterium for plant pathology thanks to pioneering molecular and genomic studies (Boucher et al., 1985; Salanoubat et al., 2002; Cunnac et al., 2004b; Occhialini et al., 2005; Mukaihara et al., 2010). As for many bacterial pathogens, the main virulence determinant in R. solanacearum is the type III secretion system (T3SS) (Boucher et al., 1985; 1994), which injects a number of effector proteins into plant cells causing disease in hosts or a hypersensitive response in resistant plants. In this article we discuss the current state in the study of the R. solanacearum T3SS, stressing the latest findings and future perspectives.


FEBS Journal | 2016

Protease signaling in animal and plant‐regulated cell death

Guy S. Salvesen; Anne Hempel; Núria S. Coll

This review aims to highlight the proteases required for regulated cell death mechanisms in animals and plants. The aim is to be incisive, and not inclusive of all the animal proteases that have been implicated in various publications. The review also aims to focus on instances when several publications from disparate groups have demonstrated the involvement of an animal protease, and also when there is substantial biochemical, mechanistic and genetic evidence. In doing so, the literature can be culled to a handful of proteases, covering most of the known regulated cell death mechanisms: apoptosis, regulated necrosis, necroptosis, pyroptosis and NETosis in animals. In plants, the literature is younger and not as extensive as for mammals, although the molecular drivers of vacuolar death, necrosis and the hypersensitive response in plants are becoming clearer. Each of these death mechanisms has at least one proteolytic component that plays a major role in controlling the pathway, and sometimes they combine in networks to regulate cell death/survival decision nodes. Some similarities are found among animal and plant cell death proteases but, overall, the pathways that they govern are kingdom‐specific with very little overlap.


Current Opinion in Plant Biology | 2017

Dying two deaths — programmed cell death regulation in development and disease

Marlies Huysmans; Saul Lema A; Núria S. Coll; Moritz K. Nowack

Programmed cell death (PCD) is a fundamental cellular process that has adopted a plethora of vital functions in multicellular organisms. In plants, PCD processes are elicited as an inherent part of regular development in specific cell types or tissues, but can also be triggered by biotic and abiotic stresses. Although over the last years we have seen progress in our understanding of the molecular regulation of different plant PCD processes, it is still unclear whether a common core machinery exists that controls cell death in development and disease. In this review, we discuss recent advances in the field, comparing some aspects of the molecular regulation controlling developmental and pathogen-triggered PCD in plants.

Collaboration


Dive into the Núria S. Coll's collaboration.

Top Co-Authors

Avatar

Marc Valls

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffery L. Dangl

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Crina Popa

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc Planas-Marquès

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge