Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Núria Villalonga is active.

Publication


Featured researches published by Núria Villalonga.


Journal of Biological Chemistry | 2006

Association of Kv1.5 and Kv1.3 contributes to the major voltage-dependent K+ channel in macrophages.

Rubén Vicente; Artur Escalada; Núria Villalonga; Laura Texidó; Meritxell Roura-Ferrer; Mireia Martín-Satué; Concepció Soler; Carles Solsona; Michael M. Tamkun; Antonio Felipe

Voltage-dependent K+ (Kv) currents in macrophages are mainly mediated by Kv1.3, but biophysical properties indicate that the channel composition could be different from that of T-lymphocytes. K+ currents in mouse bone marrow-derived and Raw-264.7 macrophages are sensitive to Kv1.3 blockers, but unlike T-cells, macrophages express Kv1.5. Because Shaker subunits (Kv1) may form heterotetrameric complexes, we investigated whether Kv1.5 has a function in Kv currents in macrophages. Kv1.3 and Kv1.5 co-localize at the membrane, and half-activation voltages and pharmacology indicate that K+ currents may be accounted for by various Kv complexes in macrophages. Co-expression of Kv1.3 and Kv1.5 in human embryonic kidney 293 cells showed that the presence of Kv1.5 leads to a positive shift in K+ current half-activation voltages and that, like Kv1.3, Kv1.3/Kv1.5 heteromers are sensitive to r-margatoxin. In addition, both proteins co-immunoprecipitate and co-localize. Fluorescence resonance energy transfer studies further demonstrated that Kv1.5 and Kv1.3 form heterotetramers. Electrophysiological and pharmacological studies of different ratios of Kv1.3 and Kv1.5 co-expressed in Xenopus oocytes suggest that various hybrids might be responsible for K+ currents in macrophages. Tumor necrosis factor-α-induced activation of macrophages increased Kv1.3 with no changes in Kv.1.5, which is consistent with a hyperpolarized shift in half-activation voltage and a lower IC50 for margatoxin. Taken together, our results demonstrate that Kv1.5 co-associates with Kv1.3, generating functional heterotetramers in macrophages. Changes in the oligomeric composition of functional Kv channels would give rise to different biophysical and pharmacological properties, which could determine specific cellular responses.


Biochemical Pharmacology | 2010

Immunomodulatory effects of diclofenac in leukocytes through the targeting of Kv1.3 voltage-dependent potassium channels.

Núria Villalonga; Miren David; Joanna Bielanska; Teresa Gonzalez; David Parra; Concepció Soler; Núria Comes; Carmen Valenzuela; Antonio Felipe

Kv1.3 plays a crucial role in the activation and proliferation of T-lymphocytes and macrophages. While Kv1.3 is responsible for the voltage-dependent potassium current in T-cells, in macrophages this K(+) current is generated by the association of Kv1.3 and Kv1.5. Patients with autoimmune diseases show a high number of effector memory T cells that are characterized by a high expression of Kv1.3 and Kv1.3 antagonists ameliorate autoimmune disorders in vivo. Diclofenac is a non-steroidal anti-inflammatory drug (NSAID) used in patients who suffer from painful autoimmune diseases such as rheumatoid arthritis. In this study, we show that diclofenac impairs immune response via a mechanism that involves Kv1.3. While diclofenac inhibited Kv1.3 expression in activated macrophages and T-lymphocytes, Kv1.5 remained unaffected. Diclofenac also decreased iNOS levels in Raw 264.7 cells, impairing their activation in response to lipopolysaccharide (LPS). LPS-induced macrophage migration and IL-2 production in stimulated Jurkat T-cells were also blocked by pharmacological doses of diclofenac. These effects were mimicked by Margatoxin, a specific Kv1.3 inhibitor, and Charybdotoxin, which blocks both Kv1.3 and Ca(2+)-activated K(+) channels (K(Ca)3.1). Because Kv1.3 is a very good target for autoimmune therapies, the effects of diclofenac on Kv1.3 are of high pharmacological relevance.


Journal of Biological Chemistry | 2008

Kv1.5 Association Modifies Kv1.3 Traffic and Membrane Localization

Rubén Vicente; Núria Villalonga; Maria Calvo; Artur Escalada; Carles Solsona; Concepció Soler; Michael M. Tamkun; Antonio Felipe

Kv1.3 activity is determined by raft association. In addition to Kv1.3, leukocytes also express Kv1.5, and both channels control physiological responses. Because the oligomeric composition may modify the channel targeting to the membrane, we investigated heterotetrameric Kv1.3/Kv1.5 channel traffic and targeting in HEK cells. Kv1.3 and Kv1.5 generate multiple heterotetramers with differential surface expression according to the subunit composition. FRET analysis and pharmacology confirm the presence of functional hybrid channels. Raft association was evaluated by cholesterol depletion, caveolae colocalization, and lateral diffusion at the cell surface. Immunoprecipitation showed that both Kv1.3 and heteromeric channels associate with caveolar raft domains. However, homomeric Kv1.3 channels showed higher association with caveolin traffic. Moreover, FRAP analysis revealed higher mobility for hybrid Kv1.3/Kv1.5 than Kv1.3 homotetramers, suggesting that heteromers target to distinct surface microdomains. Studies with lipopolysaccharide-activated macrophages further supported that different physiological mechanisms govern Kv1.3 and Kv1.5 targeting to rafts. Our results implicate the traffic and localization of Kv1.3/Kv1.5 heteromers in the complex regulation of immune system cells.


The Journal of General Physiology | 2010

Immunomodulation of voltage-dependent K+ channels in macrophages: molecular and biophysical consequences

Núria Villalonga; Miren David; Joanna Bielanska; Rubén Vicente; Núria Comes; Carmen Valenzuela; Antonio Felipe

Voltage-dependent potassium (Kv) channels play a pivotal role in the modulation of macrophage physiology. Macrophages are professional antigen-presenting cells and produce inflammatory and immunoactive substances that modulate the immune response. Blockage of Kv channels by specific antagonists decreases macrophage cytokine production and inhibits proliferation. Numerous pharmacological agents exert their effects on specific target cells by modifying the activity of their plasma membrane ion channels. Investigation of the mechanisms involved in the regulation of potassium ion conduction is, therefore, essential to the understanding of potassium channel functions in the immune response to infection and inflammation. Here, we demonstrate that the biophysical properties of voltage-dependent K+ currents are modified upon activation or immunosuppression in macrophages. This regulation is in accordance with changes in the molecular characteristics of the heterotetrameric Kv1.3/Kv1.5 channels, which generate the main Kv in macrophages. An increase in K+ current amplitude in lipopolysaccharide-activated macrophages is characterized by a faster C-type inactivation, a greater percentage of cumulative inactivation, and a more effective margatoxin (MgTx) inhibition than control cells. These biophysical parameters are related to an increase in Kv1.3 subunits in the Kv1.3/Kv1.5 hybrid channel. In contrast, dexamethasone decreased the C-type inactivation, the cumulative inactivation, and the sensitivity to MgTx concomitantly with a decrease in Kv1.3 expression. Neither of these treatments apparently altered the expression of Kv1.5. Our results demonstrate that the immunomodulation of macrophages triggers molecular and biophysical consequences in Kv1.3/Kv1.5 hybrid channels by altering the subunit stoichiometry.


Recent Patents on Anti-cancer Drug Discovery | 2007

Potassium channels are a new target field in anticancer drug design.

Núria Villalonga; Joan C. Ferrere; Josep M. Argilés; Enric Condom; Antonio Felipe

Potassium channels constitute a large and heterogeneous family with more than eighty genes which encode membrane proteins that control membrane potential. In addition to nerve and cardiac action potential, these proteins are involved in a number of physiological processes including volume regulation, apoptosis, immunomodulation and differentiation. Many potassium channels have been related to proliferation and cell-cycle progression in mammalian cell lines and certain potassium channels show impaired expression in cancer cells and tumours. In addition, in some cases a correlation has been established between the protein expression levels and the grade of malignancy of the tumour. Many drugs have been found to inhibit both K+ channel activity and cell-cycle progression. Since potassium channels may play a pivotal role in tumour cell proliferation, these proteins should be taken into account when designing new cancer treatment strategies. The increasing list of recent patents, covered in this review, shows the relevance of this emergent subject.


Biochemical and Biophysical Research Communications | 2008

Skeletal muscle Kv7 (KCNQ) channels in myoblast differentiation and proliferation

Meritxell Roura-Ferrer; Laura Solé; Ramón Martínez-Mármol; Núria Villalonga; Antonio Felipe

Voltage-dependent K(+) channels (Kv) are involved in myocyte proliferation and differentiation by triggering changes in membrane potential and regulating cell volume. Since Kv7 channels may participate in these events, the purpose of this study was to investigate whether skeletal muscle Kv7.1 and Kv7.5 were involved during proliferation and myogenesis. Here we report that, while myotube formation did not regulate Kv7 channels, Kv7.5 was up-regulated during cell cycle progression. Although, Kv7.1 mRNA also increased during the G(1)-phase, pharmacological evidence mainly involves Kv7.5 in myoblast growth. Our results indicate that the cell cycle-dependent expression of Kv7.5 is involved in skeletal muscle cell proliferation.


Biochimica et Biophysica Acta | 2008

Cell cycle-dependent expression of Kv1.5 is involved in myoblast proliferation

Núria Villalonga; Ramón Martínez-Mármol; Meritxell Roura-Ferrer; Miren David; Carmen Valenzuela; Concepció Soler; Antonio Felipe

Voltage-dependent K(+) channels (Kv) are involved in the proliferation of many types of cells, but the mechanisms by which their activity is related to cell growth remain unclear. Kv antagonists inhibit the proliferation of mammalian cells, which is of physiological relevance in skeletal muscle. Although myofibres are terminally differentiated, some resident myoblasts may re-enter the cell cycle and proliferate. Here we report that the expression of Kv1.5 is cell-cycle dependent during myoblast proliferation. In addition to Kv1.5 other Kv, such as Kv1.3, are also up-regulated. However, pharmacological evidence mainly implicates Kv1.5 in myoblast growth. Thus, the presence of S0100176, a Kv antagonist, but not margatoxin and dendrotoxin, led to cell cycle arrest during the G(1)-phase. The use of selective cell cycle blockers showed that Kv1.5 was transiently accumulated during the early G(1)-phase. Furthermore, while myoblasts treated with S0100176 expressed low levels of cyclin A and D(1), the expression of p21(cip-1) and p27(kip1), two cyclin-dependent kinase inhibitors, increased. Our results indicate that the cell cycle-dependent expression of Kv1.5 is involved in skeletal muscle cell proliferation.


Journal of Cellular Physiology | 2008

Multiple Kv1.5 targeting to membrane surface microdomains.

Ramón Martínez-Mármol; Núria Villalonga; Laura Solé; Rubén Vicente; Michael M. Tamkun; Concepció Soler; Antonio Felipe

Surface expression of voltage‐dependent K+ channels (Kv) has a pivotal role in leukocyte physiology. Although little is known about the physiological role of lipid rafts, these microdomains concentrate signaling molecules and their ion channel substrates. Kv1.3 associates with Kv1.5 to form functional channels in macrophages. Different isoform stoichiometries lead to distinct heteromeric channels which may be further modulated by targeting the complex to different membrane surface microdomains. Kv1.3 targets to lipid rafts, whereas Kv1.5 localization is under debate. With this in mind, we wanted to study whether heterotetrameric Kv1.5‐containing channels target to lipid rafts. While in transfected HEK‐293 cells, homo‐ and heterotetrameric channels targeted to rafts, Kv1.5 did not target to rafts in macrophages. Therefore, Kv1.3/Kv1.5 hybrid channels are mostly concentrated in non‐raft microdomains. However, LPS‐induced activation, which increases the Kv1.3/Kv1.5 ratio and caveolin, targeted Kv1.5 back to lipid rafts. Moreover, Kv1.5 did not localize to low‐buoyancy fractions in L6E9 skeletal myoblasts, which also coexpress both channels, heart membranes or cardiomyocyes. Coexpression of a Cav3DGV‐mutant confined Kv1.5 to Cav3DGV‐vesicles of HEK cells. Contrarily, coexpression of Kvβ2.1 impaired the Kv1.5 targeting to raft microdomains in HEK cells. Our results indicate that Kv1.5 partnership interactions are underlying mechanisms governing channel targeting to lipid rafts. J. Cell. Physiol. 217: 667–673, 2008.


Cancer Detection and Prevention | 2006

Potassium channels: New targets in cancer therapy

Antonio Felipe; Rubén Vicente; Núria Villalonga; Meritxell Roura-Ferrer; Ramón Martínez-Mármol; Laura Solé; Joan Carles Ferreres; Enric Condom


Biochemical and Biophysical Research Communications | 2007

Kv1.3/Kv1.5 heteromeric channels compromise pharmacological responses in macrophages

Núria Villalonga; Artur Escalada; Rubén Vicente; Ester Sánchez-Tilló; Antonio Celada; Carles Solsona; Antonio Felipe

Collaboration


Dive into the Núria Villalonga's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura Solé

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Carmen Valenzuela

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Miren David

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge