Nushin Aghajari
Claude Bernard University Lyon 1
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nushin Aghajari.
Proteins | 2003
Nushin Aghajari; Filip Van Petegem; Vincent Villeret; Jean-Pierre Chessa; Charles Gerday; Richard Haser; Jozef Van Beeumen
Enzymes from psychrophilic organisms differ from their mesophilic counterparts in having a lower thermostability and a higher specific activity at low and moderate temperatures. It is in general accepted that psychrophilic enzymes are more flexible to allow easy accommodation and transformation of the substrates at low energy costs. Here, we report the structures of two crystal forms of the alkaline protease from an Antarctic Pseudomonas species (PAP), solved to 2.1‐ and 1.96‐Å resolution, respectively. Comparative studies of PAP structures with mesophilic counterparts show that the overall structures are similar but that the conformation of the substrate‐free active site in PAP resembles that of the substrate‐bound region of the mesophilic homolog, with both an active‐site tyrosine and a substrate‐binding loop displaying a conformation as in the substrate‐bound form of the mesophilic proteases. Further, a region in the catalytic domain of PAP undergoes a conformational change with a loop movement as large as 13 Å, induced by the binding of an extra calcium ion. Finally, the active site is more accessible due to deletions occurring in surrounding loop regions. Proteins 2003;50:636–647.
Journal of Biological Chemistry | 2007
Stéphanie Ravaud; Xavier Robert; Hildegard Watzlawick; Richard Haser; Ralf Mattes; Nushin Aghajari
Various diseases related to the overconsumption of sugar make a growing need for sugar substitutes. Because sucrose is an inexpensive and readily available d-glucose donor, the industrial potential for enzymatic synthesis of the sucrose isomers trehalulose and/or isomaltulose from sucrose is large. The product specificity of sucrose isomerases that catalyze this reaction depends essentially on the possibility for tautomerization of sucrose, which is required for trehalulose formation. For optimal use of the enzyme, targeting controlled synthesis of these functional isomers, it is necessary to minimize the side reactions. This requires an extensive analysis of substrate binding modes and of the specificity-determining sites in the structure. The 1.6-2.2-Å resolution three-dimensional structures of native and mutant complexes of a trehalulose synthase from Pseudomonas mesoacidophila MX-45 mimic successive states of the enzyme reaction. Combined with mutagenesis studies they give for the first time thorough insights into substrate recognition and processing and reaction specificities of these enzymes. Among the important outcomes of this study is the revelation of an aromatic clamp defined by Phe256 and Phe280 playing an essential role in substrate recognition and in controlling the reaction specificity, which is further supported by mutagenesis studies. Furthermore, this study highlights essential residues for binding the glucosyl and fructosyl moieties. The introduction of subtle changes informed by comparative three-dimensional structural data observed within our study can lead to fundamental modifications in the mode of action of sucrose isomerases and hence provide a template for industrial catalysts.
Journal of Bacteriology | 2003
David Mandelman; Anne Belaich; Jean-Pierre Belaich; Nushin Aghajari; Hugues Driguez; Richard Haser
Complete cellulose degradation is the first step in the use of biomass as a source of renewable energy. To this end, the engineering of novel cellulase activity, the activity responsible for the hydrolysis of the beta-1,4-glycosidic bonds in cellulose, is a topic of great interest. The high-resolution X-ray crystal structure of a multidomain endoglucanase from Clostridium cellulolyticum has been determined at a 1.6-A resolution. The endoglucanase, Cel9G, is comprised of a family 9 catalytic domain attached to a family III(c) cellulose-binding domain. The two domains together form a flat platform onto which crystalline cellulose is suggested to bind and be fed into the active-site cleft for endolytic hydrolysis. To further dissect the structural basis of cellulose binding and hydrolysis, the structures of Cel9G in the presence of cellobiose, cellotriose, and a DP-10 thio-oligosaccharide inhibitor were resolved at resolutions of 1.7, 1.8, and 1.9 A, respectively.
Journal of Bacteriology | 2007
Moez Rhimi; Michel Juy; Nushin Aghajari; Richard Haser; Samir Bejar
The L-arabinose isomerase (L-AI) from Bacillus stearothermophilus US100 is characterized by its high thermoactivity and catalytic efficiency. Furthermore, as opposed to the majority of l-arabinose isomerases, this enzyme requires metallic ions for its thermostability rather than for its activity. These features make US100 L-AI attractive as a template for industrial use. Based on previously solved crystal structures and sequence alignments, we identified amino acids that are putatively important for the US100 L-AI isomerization reaction. Among these, E306, E331, H348, and H447, which correspond to the suggested essential catalytic amino acids of the L-fucose isomerase and the L-arabinose isomerase from Escherichia coli, are presumed to be the active-site residues of US100 L-AI. Site-directed mutagenesis confirmed that the mutation of these residues resulted in totally inactive proteins, thus demonstrating their critical role in the enzyme activity. A homology model of US100 L-AI was constructed, and its analysis highlighted another set of residues which may be crucial for the recognition and processing of substrates; hence, these residues were subjected to mutagenesis studies. The replacement of the D308, F329, E351, and H446 amino acids with alanine seriously affected the enzyme activities, and suggestions about the roles of these residues in the catalytic mechanism are given. The mutation F279Q strongly increased the enzymes affinity for L-fucose and decreased the affinity for L-arabinose compared to that of the wild-type enzyme, showing the implication of this amino acid in substrate recognition.
Applied and Environmental Microbiology | 2005
Sang-Ho Baik; Fabrice Michel; Nushin Aghajari; Richard Haser; Shigeaki Harayama
ABSTRACT A thermostable glucose dehydrogenase (GlcDH) mutant of Bacillus megaterium IWG3 harboring the Q252L substitution (Y. Makino, S. Negoro, I. Urabe, and H. Okada, J. Biol. Chem. 264:6381-6385, 1989) is stable at pH values above 9, but only in the presence of 2 M NaCl. Another GlcDH mutant exhibiting increased stability at an alkaline pH in the absence of NaCl has been isolated previously (S.-H. Baik, T. Ide, H. Yoshida, O. Kagami, and S. Harayama, Appl. Microbiol. Biotechnol. 61:329-335, 2003). This mutant had two amino acid substitutions, Q252L and E170K. In the present study, we characterized three GlcDH mutants harboring the substitutions Q252L, E170K, and Q252L/E170K under low-salt conditions. The GlcDH mutant harboring two substitutions, Q252L/E170K, was stable, but mutants harboring a single substitution, either Q252L or E170K, were unstable at an alkaline pH. Gel filtration chromatography analyses demonstrated that the oligomeric state of the Q252/E170K enzyme was stable, while the tetramers of the enzymes harboring a single substitution (Q252L or E170K) dissociated into dimers at an alkaline pH. These results indicated that the Q252L and E170K substitutions synergistically strengthened the interaction at the dimer-dimer interface. The crystal structure of the E170K/Q252L mutant, determined at 2.0-Å resolution, showed that residues 170 and 252 are located in a hydrophobic cavity at the subunit-subunit interface. We concluded that these residues in the wild-type enzyme have thermodynamically unfavorable effects, while the Q252L and E170K substitutions increase the subunit-subunit interactions by stabilizing the hydrophobic cavity.
Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2006
Stéphanie Ravaud; Hildegard Watzlawick; Richard Haser; Ralf Mattes; Nushin Aghajari
Palatinose (isomaltulose, alpha-D-glucosylpyranosyl-1,6-D-fructofuranose), a nutritional and acariogenic reducing sugar, is industrially obtained from sucrose by using immobilized cells of Protaminobacter rubrum that produce the sucrose isomerase SmuA. The isomerization of sucrose catalyzed by this enzyme also results in the formation of trehalulose (alpha-D-glucosylpyranosyl-1,1-D-fructofuranose) in smaller amounts and glucose, fructose and eventually isomaltose as by-products, which lower the yield of the reaction and complicate the recovery of palatinose. The determination of the three-dimensional structure of SmuA will provide a basis for rational protein-engineering studies in order to optimize the industrial production of palatinose. A recombinant form of the 67.3 kDa SmuA enzyme has been crystallized in the native state by the vapour-diffusion method. Crystals belong to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 61.6, b = 81.4, c = 135.6 A, and diffract to 1.95 A resolution on a synchrotron-radiation source.
Acta Crystallographica Section D-biological Crystallography | 2003
Sébastien Violot; Richard Haser; Guillaume Sonan; Daphné Georlette; Georges Feller; Nushin Aghajari
The Antarctic psychrophile Pseudoalteromonas haloplanktis produces a cold-active cellulase. To date, a three-dimensional structure of a psychrophilic cellulase has been lacking. Crystallographic studies of this cold-adapted enzyme have therefore been initiated in order to contribute to the understanding of the molecular basis of the cold adaptation and the high catalytic efficiency of the enzyme at low and moderate temperatures. The catalytic core domain of the psychrophilic cellulase CelG from P. haloplanktis has been expressed, purified and crystallized and a complete diffraction data set to 1.8 A has been collected. The space group was found to be P2(1)2(1)2(1), with unit-cell parameters a = 135.1, b = 78.4, c = 44.1 A. A molecular-replacement solution, using the structure of the mesophilic counterpart Cel5A from Erwinia chrysanthemi as a search model, has been found.
Journal of Biological Chemistry | 2009
Gaelle Brien; Anne-Laure Debaud; Xavier Robert; Lisa Oliver; Marie-Claude Trescol-Biémont; Nicolas Cauquil; Nushin Aghajari; François M. Vallette; Richard Haser; Nathalie Bonnefoy-Berard
Unlike other antiapoptotic members of the Bcl-2 family, Bfl-1 does not contain a well defined C-terminal transmembrane domain, and whether the C-terminal tail of Bfl-1 functions as a membrane anchor is not yet clearly established. The molecular modeling study of the full-length Bfl-1 performed within this work suggests that Bfl-1 may co-exist in two distinct conformational states: one in which its C-terminal helix α9 is inserted in the hydrophobic groove formed by the BH1–3 domains of Bfl-1 and one with its C terminus. Parallel analysis of the subcellular localization of Bfl-1 indicates that even if Bfl-1 may co-exist in two distinct conformational states, most of the endogenous protein is tightly associated with the mitochondria by its C terminus in both healthy and apoptotic peripheral blood lymphocytes as well as in malignant B cell lines. However, the helix α9 of Bfl-1, and therefore the binding of Bfl-1 to mitochondria, is not absolutely required for the antiapoptotic activity of Bfl-1. A particular feature of Bfl-1 is the amphipathic character of its C-terminal helix α9. Our data clearly indicate that this property of helix α9 is required for the anchorage of Bfl-1 to the mitochondria but also regulates the antiapoptotic function Bfl-1.
Journal of Bacteriology | 2003
Stéphanie Ravaud; Patrice Gouet; Richard Haser; Nushin Aghajari
The psychrophilic alkaline metalloprotease (PAP) produced by a Pseudomonas bacterium isolated in Antarctica belongs to the clan of metzincins, for which a zinc ion is essential for catalytic activity. Binding studies in the crystalline state have been performed by X-ray crystallography in order to improve the understanding of the role of the zinc and calcium ions bound to this protease. Cocrystallization and soaking experiments with EDTA in a concentration range from 1 to 85 mM have resulted in five three-dimensional structures with a distinct number of metal ions occupying the ion-binding sites. Evolution of the structural changes observed in the vicinity of each cation-binding site has been studied as a function of the concentration of EDTA, as well as of time, in the presence of the chelator. Among others, we have found that the catalytic zinc ion was the first ion to be chelated, ahead of a weakly bound calcium ion (Ca 700) exclusive to the psychrophilic enzyme. Upon removal of the catalytic zinc ion, the side chains of the active-site residues His-173, His-179 and Tyr-209 shifted approximately 4, 1.0, and 1.6 A, respectively. Our studies confirm and also explain the sensitivity of PAP toward moderate EDTA concentrations and propose distinct roles for the calcium ions. A new crystal form of native PAP validates our previous predictions regarding the adaptation of this enzyme to cold environments as well as the proteolytic domain calcium ion being exclusive for PAP independent of crystallization conditions.
Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2005
SteÂphanie Ravaud; Hildegard Watzlawick; Richard Haser; Ralf Mattes; Nushin Aghajari
The trehalulose synthase (MutB) from Pseudomonas mesoacidophila MX-45, belonging to glycoside hydrolase family 13, catalyses the isomerization of sucrose to trehalulose (alpha-D-glucosylpyranosyl-1,1-D-fructofuranose) and isomaltulose (alpha-D-glucosylpyranosyl-1,6-D-fructofuranose) as main products and glucose and fructose in residual amounts from the hydrolytic reaction. To date, a three-dimensional structure of a sucrose isomerase that produces mainly trehalulose, as is the case for MutB, has been lacking. Crystallographic studies of this 64 kDa enzyme have therefore been initiated in order to contribute to the understanding of the molecular basis of sucrose decomposition, isomerization and of the selectivity of this enzyme that leads to the formation of different products. The MutB protein has been overexpressed, purified and crystallized using the hanging-drop vapour-diffusion method. Two different crystal forms have been obtained: one diffracts X-rays to 1.6 A resolution using synchrotron radiation and belongs to space group P1, with unit-cell parameters a = 63.8, b = 72.0, c = 82.2 A, alpha = 67.5, beta = 73.1, gamma = 70.8 degrees, while the other form diffracts to 1.8 A resolution using synchrotron radiation and belongs to space group P2(1), with unit-cell parameters a = 63.7, b = 85.9, c = 119.7 A, beta = 97.7 degrees. A molecular-replacement solution has been found using the structure of the isomaltulose synthase (PalI) from Klebsiella sp. LX3 as a search model.