Nuwandi M. Ariyasingha
Wayne State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nuwandi M. Ariyasingha.
Journal of Chemical Physics | 2014
Chamara Abeysekera; Lindsay N. Zack; G. Barratt Park; Baptiste Joalland; James M. Oldham; Kirill Prozument; Nuwandi M. Ariyasingha; Ian R. Sims; Robert W. Field; Arthur G. Suits
This second paper in a series of two reports on the performance of a new instrument for studying chemical reaction dynamics and kinetics at low temperatures. Our approach employs chirped-pulse Fourier-transform microwave (CP-FTMW) spectroscopy to probe photolysis and bimolecular reaction products that are thermalized in pulsed uniform flows. Here we detail the development and testing of a new K(a)-band CP-FTMW spectrometer in combination with the pulsed flow system described in Paper I [J. M. Oldham, C. Abeysekera, B. Joalland, L. N. Zack, K. Prozument, I. R. Sims, G. B. Park, R. W. Field, and A. G. Suits, J. Chem. Phys. 141, 154202 (2014)]. This combination delivers broadband spectra with MHz resolution and allows monitoring, on the μs timescale, of the appearance of transient reaction products. Two benchmark reactive systems are used to illustrate and characterize the performance of this new apparatus: the photodissociation of SO2 at 193 nm, for which the vibrational populations of the SO product are monitored, and the reaction between CN and C2H2, for which the HCCCN product is detected in its vibrational ground state. The results show that the combination of these two well-matched techniques, which we refer to as chirped-pulse in uniform flow, also provides insight into the vibrational and rotational relaxation kinetics of the nascent reaction products. Future directions are discussed, with an emphasis on exploring the low temperature chemistry of complex polyatomic systems.
Journal of Physical Chemistry Letters | 2015
Chamara Abeysekera; Baptiste Joalland; Nuwandi M. Ariyasingha; Lindsay N. Zack; Ian R. Sims; Robert W. Field; Arthur G. Suits
A new chirped-pulse/uniform flow (CPUF) spectrometer has been developed and used to determine product branching in a multichannel reaction. With this technique, bimolecular reactions can be initiated in a cold, thermalized, high-density molecular flow and a broadband microwave spectrum acquired for all products with rotational transitions within a chosen frequency window. In this work, the CN + CH3CCH reaction was found to yield HCN via a direct H-abstraction reaction, whereas indirect addition/elimination pathways to HCCCN, CH3CCCN, and CH2CCHCN were also probed. From these observations, quantitative branching ratios were established for all products as 12(5)%, 66(4)%, 22(6)%, and 0(8)% into HCN, HCCCN, CH3CCCN, and CH2CCHCN, respectively. The values are consistent with statistical calculations based on new ab initio results at the CBS-QB3 level of theory. This work is a demonstration of CPUF as a powerful technique for quantitatively determining the branching into polyatomic products from a bimolecular reaction.
Journal of the American Chemical Society | 2018
Xiang-Kui Gu; Juliana Silva Alves Carneiro; Samji Samira; Anirban Das; Nuwandi M. Ariyasingha; Eranda Nikolla
Oxygen electrocatalysis plays a critical role in the efficiency of important energy conversion and storage systems. While many efforts have focused on designing efficient electrocatalysts for these processes, optimal catalysts that are inexpensive, active, selective, and stable are still being searched. Nonstoichiometric, mixed-metal oxides present a promising group of electrocatalysts for these processes due to the versatility of the surface composition and fast oxygen conducting properties. Herein, we demonstrate, using a combination of theoretical and experimental studies, the ability to develop design principles that can be used to engineer oxygen electrocatalysis activity of layered, mixed ionic-electronic conducting Ruddlesden-Popper (R-P) oxides. We show that a density function theory (DFT) derived descriptor, O2 binding energy on a surface oxygen vacancy, can be effective in identifying efficient R-P oxide structures for oxygen reduction reaction (ORR). Using a controlled synthesis method, well-defined nanostructures of R-P oxides are obtained, which along with thermochemical and electrochemical activity studies are used to validate the design principles. This has led to the identification of a highly active ORR electrocatalyst, nanostructured Co-doped lanthanum nickelate oxide, which when incorporated in solid oxide fuel cell cathodes significantly enhances the performance at intermediate temperatures (∼550 °C), while maintaining long-term stability. The reported findings demonstrate the effectiveness of the developed design principles to engineer mixed ionic-electronic conducting oxides for efficient oxygen electrocatalysis, and the potential of nanostructured Co-doped lanthanum nickelate oxides as promising catalysts for oxygen electrocatalysis.
Journal of Physical Chemistry Letters | 2018
Thomas Theis; Nuwandi M. Ariyasingha; Roman V. Shchepin; Jacob R. Lindale; Warren S. Warren; Eduard Y. Chekmenev
Here we present the feasibility of NMR signal amplification by reversible exchange (SABRE) using radio frequency irradiation at low magnetic field (0.05 T) in the regime where the chemical shifts of free and catalyst-bound species are similar. In SABRE, the 15N-containing substrate and parahydrogen perform simultaneous chemical exchange on an iridium hexacoordinate complex. A shaped spin-lock induced crossing (SLIC) radio frequency pulse sequence followed by a delay is applied at quasi-resonance (QUASR) conditions of 15N spins of a 15N-enriched substrate. As a result of this pulse sequence application, 15N z-magnetization is created from the spin order of parahydrogen-derived hyperpolarized hydrides. The repetition of the pulse sequence block consisting of a shaped radio frequency pulse and the delay leads to the buildup of 15N magnetization. The modulation of this effect by the irradiation frequency, pulse duration and amplitude, delay duration, and number of pumping cycles was demonstrated. Pyridine-15N, acetonitrile-15N, and metronidazole-15N2-13C2 substrates were studied representing three classes of compounds (five- and six-membered heterocycles and nitrile), showing the wide applicability of the technique. Metronidazole-15N2-13C2 is an FDA-approved antibiotic that can be injected in large quantities, promising noninvasive and accurate hypoxia sensing. The 15N hyperpolarization levels attained with QUASR-SABRE on metronidazole-15N2-13C2 were more than 2-fold greater than those with SABRE-SHEATH (SABRE in shield enables alignment transfer to heteronuclei), demonstrating that QUASR-SABRE can deliver significantly more efficient means of SABRE hyperpolarization.
Journal of Physical Chemistry A | 2018
Nureshan Dias; Baptiste Joalland; Nuwandi M. Ariyasingha; Arthur G. Suits; Bernadette M. Broderick
The UV photodissociation of isoxazole (c-C3H3NO) is studied in this work by chirped-pulse Fourier transform mm-wave spectroscopy in a pulsed uniform Laval flow. This approach offers a number of advantages over traditional spectroscopic detection methods due to its broadband, sub-MHz resolution, and fast-acquisition capabilities. In coupling this technique with a quasi-uniform Laval flow, we are able to obtain product branching fractions in the 193 nm photodissociation of isoxazole. Five dissociation channels are explored through direct detection of seven different photoproducts. These species and their respective branching fractions (%) include the following: HCN (53.8 ± 1.7), CH3CN (23.4 ± 6.8), HCO (9.5 ± 2.3), CH2CN (7.8 ± 2.9), CH2CO (3.8 ± 0.9), HCCCN (0.9 ± 0.2), and HNC (0.8 ± 0.2). Guided by previous electronic structure and dynamics simulations, we are able to elucidate the dissociation dynamics that govern the final product branching fractions observed in this work, which differ significantly from previous reports on the thermal decomposition of isoxazole. Interestingly, both direct and indirect dynamics contribute to its dissociation, and clear signatures of both are manifested in the relative branching ratios obtained. Consistent with previous studies on the unimolecular dissociation of isoxazole, our findings also suggest the importance of the open-shell singlet diradicaloid species vinylnitrene in the dissociation dynamics, regardless of the initially populated excited state. This work, taken together with previous investigations, provides a global picture of the complex dissociation pathways involved in the photodissociation of isoxazole.
71st International Symposium on Molecular Spectroscopy | 2016
Nuwandi M. Ariyasingha; Arthur G. Suits; Alexander M. Mebel; Baptiste Joalland
NUWANDI M ARIYASINGHA, Department of Chemistry, university of Missouri, Columbia, MO, USA; BAPTISTE JOALLAND, Departmnt de Physique Moleculaire, Institut de Physique de rennes, Bat 11C, Campus de Beaulieu, France; ALEXANDER M MEBEL, Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA; ARTHUR SUITS, Department of Chemistry, university of Missouri, Columbia, MO, USA.
70th International Symposium on Molecular Spectroscopy | 2015
Nuwandi M. Ariyasingha; Arthur G. Suits; Baptiste Joalland; Chamara Abeysekera; Lindsay N. Zack
Chirped-Pulse Fourier-transform microwave spectroscopy has been applied in a uniform supersonic flow (Chirped-pulse/Uniform flow, CPUF) to study the 193 nm photodissociation of methyl isothiocyanate (MITC). Several products (CH3NC, NCS, H2CS, HCN and HNC) were identified via their pure rotational spectra. Observation of CH3NC and NCS are consistent with previous studies of this system, however it is the first detection of H2CS and HCN/HNC. Branching ratios were obtained from these data and will be discussed.
Chemical Physics Letters | 2016
Ravin Fernando; Nuwandi M. Ariyasingha; Arthur G. Suits
Bulletin of the American Physical Society | 2016
Bernadette M. Broderick; Nuwandi M. Ariyasingha; Arthur G. Suits
71st International Symposium on Molecular Spectroscopy | 2016
Nuwandi M. Ariyasingha; Arthur G. Suits; James Thompson; Bernadette M. Broderick