Nwadiuto Esiobu
Florida Atlantic University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nwadiuto Esiobu.
International Journal of Environmental Health Research | 2002
Nwadiuto Esiobu; Lisa Armenta; Joseph Ike
Seven locations were screened for antibiotic-resistant bacteria using a modified agar dilution technique. Isolates resistant to high levels of antibiotics were screened for r plasmids. Low-level resistance (25 w g ml−1) was widespread for ampicillin, penicillin, tetracycline, vancomycin and streptomycin but not for kanamycin. Resistant populations dropped sharply at high antibiotic levels, suggesting that intrinsic non-emergent mechanisms were responsible for the multiple drug resistance exhibited at low doses. Dairy farm manure contained significantly (P < 0.01) more (%) resistant bacteria than the other sites. Bacteria isolated from a dairy water canal, a lake by a hospital and a residential garden (fertilized by farm manure) displayed resistance frequencies of 77, 75 and 70%, respectively. Incidence of tetracycline resistance was most prevalent at 47-89% of total bacteria. Out of 200 representative isolates analyzed, Pseudomonas, Enterococcus-like bacteria, Enterobacter and Burkholderia species constituted the dominant reservoirs of resistance at high drug levels (50-170 w g ml−1). Plasmids were detected in only 29% (58) of these bacteria with tetracycline resistance accounting for 65% of the plasmid pool. Overall, resistance trends correlated to the abundance and type of bacterial species present in the habitat. Environmental reservoirs of resistance include opportunistic pathogens and constitute some public health concern.
Marine Pollution Bulletin | 2012
R.L. Mohammed; Andrea Echeverry; C.M. Stinson; M. Green; Tonya D. Bonilla; Aaron Hartz; Donald S. McCorquodale Jr.; Andrew Rogerson; Nwadiuto Esiobu
The search for alternative indicators of disease-risk from non-enteric pathogens at the beach revealed high densities of targeted bacteria. To explain the high numbers of potential non-enteric pathogens, Staphylococcus aureus and Pseudomonas aeruginosa, in beach sand, we investigated factors affecting their survival and distribution, as well as those of a potential fecal indicator, Clostridium perfringens. Results indicated greater S. aureus and P. aeruginosa survival and proliferation in sterile beach sand, than seawater, with diminished numbers upon exposure to natural micro-predators. C. perfringens remained relatively consistent with initial numbers. Intermediate sand particles (850 μm-2 mm) constituted the major micro-niche; creating implications for beach classification programs. Colonization of sterile sand boxes at the beach by S. aureus and P. aeruginosa confirmed the filtering action (>100×) of beach sand. The use of these potential pathogens in periodic sanitary evaluation of beach sand quality is indicated, regardless of the factors influencing their abundance.
Critical Reviews in Biotechnology | 2017
Mohammadali Safavieh; Chad T. Coarsey; Nwadiuto Esiobu; Adnan Memic; Jatin M. Vyas; Hadi Shafiee; Waseem Asghar
Abstract Invasive candidiasis remains one of the most serious community and healthcare-acquired infections worldwide. Conventional Candida detection methods based on blood and plate culture are time-consuming and require at least 2–4 days to identify various Candida species. Despite considerable advances for candidiasis detection, the development of simple, compact and portable point-of-care diagnostics for rapid and precise testing that automatically performs cell lysis, nucleic acid extraction, purification and detection still remains a challenge. Here, we systematically review most prominent conventional and nonconventional techniques for the detection of various Candida species, including Candida staining, blood culture, serological testing and nucleic acid-based analysis. We also discuss the most advanced lab on a chip devices for candida detection.
Critical Reviews in Microbiology | 2017
Chad T. Coarsey; Nwadiuto Esiobu; Ramswamy Narayanan; Mirjana Pavlovic; Hadi Shafiee; Waseem Asghar
Abstract Ebola virus disease (EVD) is a devastating, highly infectious illness with a high mortality rate. The disease is endemic to regions of Central and West Africa, where there is limited laboratory infrastructure and trained staff. The recent 2014 West African EVD outbreak has been unprecedented in case numbers and fatalities, and has proven that such regional outbreaks can become a potential threat to global public health, as it became the source for the subsequent transmission events in Spain and the USA. The urgent need for rapid and affordable means of detecting Ebola is crucial to control the spread of EVD and prevent devastating fatalities. Current diagnostic techniques include molecular diagnostics and other serological and antigen detection assays; which can be time-consuming, laboratory-based, often require trained personnel and specialized equipment. In this review, we discuss the various Ebola detection techniques currently in use, and highlight the potential future directions pertinent to the development and adoption of novel point-of-care diagnostic tools. Finally, a case is made for the need to develop novel microfluidic technologies and versatile rapid detection platforms for early detection of EVD.
Frontiers in Plant Science | 2016
Karim Dawkins; Nwadiuto Esiobu
Invasive plant species constitute a major ecological and economic problem worldwide, often distorting trophic levels and ecosystem balance. Numerous studies implicate factors ranging from environmental plasticity, competition for nutrient and space, and allelopathy in the success of invasive species in general. The Brazilian Pepper tree (BP) was introduced to the United States in the 1800s and has since become a category one invasive plant in Florida. It has aggressively spread to about 3000 km2 of terrestrial surface, fueled in part by the prevalence of the hybrid genotypes and environmental perturbations. It displays some of the well-established invasive mechanisms but there is a serious dearth of knowledge on the plant–microbe–soil interactions and whether the rhizobiome plays any roles in the displacement of native flora and the range expansion of BP. Several control measures, including chemical, mechanical, and biological antagonism have been used with limited success while restoration of natives in soils from which BP was removed has proved problematic partly due to a poorly understood phenomenon described as the “BP legacy effect.” Emerging evidence suggests that allelopathy, selective recruitment of beneficial soil microbes, disruption of microbial community structure and alteration of nutrient cycling, exhibited by many other invasive plant species may also be involved in the case of BP. This brief review discusses the well-established BP invasion mechanisms and highlights the current understanding of the molecular, below-ground processes. It also points out the gaps in studies on the potential role of microbial interactions in the success of BP invasion. These hitherto poorly studied mechanisms could further explain the aggressive spread of BP and could potentially contribute significantly to effective control measures and enable appropriate strategies for restoring native plants. The review advocates for the use of cutting-edge techniques in advancing the plant microbiome science. Ultimately, comparing metagenomic analyses of the rhizobiome of invasive plants grown in native and non-native soils could lead to a better understanding of the microbial determinants of biotic resistance, potentially empowering environmental managers with some predictive power of future trends of plant invasion.
International Journal of Environmental Health Research | 2013
Nwadiuto Esiobu; Melissa Green; Andrea Echeverry; Tonya D. Bonilla; Corine Melanie Stinson; Aaron Hartz; Andrew Rogerson; Donald S. McCorquodale Jr.
While the value of Staphylococcus aureus as an indicator for non-enteric diseases is unclear, understanding its prevalence in recreational beaches would prove useful, given its pathogenic potential. Staphylococcus aureus levels were evaluated in sand and seawater at three beaches during one year. To elucidate possible S. aureus sources or colonization trends, distribution in sand was analyzed at Hollywood Beach. Staphylococcus aureus levels fluctuated throughout the study with highest average densities detected in dry sand (3.46 × 105 CFU/g, Hobie Beach), particularly at beaches with high human density. Patchy distribution marked hotspots of human use and/or possible bacterial re-growth. Data from a brief epidemiological survey indicated a very slight association between beach usage and skin conditions; suggesting high S. aureus levels in sand may not necessarily constitute major health risks. Because the possibility of disease transmission exists, particularly to children and immuno-compromised beach-goers, periodic surveying of highly frequented beaches seems warranted.
Methods of Molecular Biology | 2006
Nwadiuto Esiobu
Environmental monitoring and public health risk assessments require methods that are rapid and quantitative with defined sensitivity and specificity thresholds. Although several molecular techniques have been developed to rapidly detect bacteria in complex matrices, the challenge to simultaneously detect and enumerate only viable cells remains a limiting factor to their routine application. This chapter describes the use of peroxidase-labeled peptide nucleic acid (PNA) probes to simultaneously detect and count live Staphylococcus aureus, a human pathogen in sea water and beach sand. Mixed bacteria from the environmental sample were immobilized on polyvinylidene difluoride membrane filters and allowed to form microcolonies during a 5-h incubation on Tryptic soy agar plates. PNA probes targeting species-specific regions of the 16S rRNA sequences of S. aureus were then used to hybridize the target bacteria in situ. Probes were detected by capturing chemiluminiscence on instant (e.g., Polaroid) films. Each viable cell (i.e., rRNA producing) is detected as a light spot from its microcolony on the film after scanning the image into a computer. This rapid in situ hybridization technique is simple and highly sensitive and could be developed into portable kits for monitoring pathogens and indicators in the environment.
Frontiers in Microbiology | 2017
Karim Dawkins; Nwadiuto Esiobu
The potential role of soil fungi in the invasion of the Brazilian pepper tree (Schinus terebinthifolius—BP) in Florida is not known; although the low biotic resistance of Florida soils is often invoked to explain the prevalence of many invasive species. To gain an initial insight into BPs mycorrhizal associations, this study examined the rhizobiome of BP and two native plants (Hamelia patens and Bidens alba) across six locations. Arbuscular mycorrhizal fungi (AMF) associated with the roots of the target plants and bulk soil was characterized by spore morphotyping. Sequence analysis of metagenomic DNA from lateral roots/rhizosphere of BP (n = 52) and a native shrub H. patens (n = 37) on the same parcel yielded other fungal associates. Overall, the total population of AMF associated with BP was about two folds greater than that of the two native plants (p = 0.0001) growing on the same site. The dominant AMF under Schinus were members of the common Glomus and Rhizophagus spp. By contrast, the most prevalent AMF in the bulk soil and rhizosphere of the two Florida native plants, Acaulospora spp (29%) was sharply diminished (9%) under BP rhizosphere. Analysis of the ITS2 sequences also showed that Schinus rhizosphere had a high relative abundance of ectomycorrhizal fungi (76.5%) compared to the native H. patens (2.6%), with the species Lactifluus hygrophoroides (Basidiomycota) being the most prevalent at 61.5% (p < 0.05). Unlike the native plants where pathogenic fungi like Phyllosticta sp., Phoma sp., and Neofusicoccum andium were present (8.1% for H. patens), only one potentially pathogenic fungal taxon was detected (3.9%) under BP. The striking disparity in the relative abundance of AMF and other fungal types between BP and the native species is quite significant. Fungal symbionts could aide plant invasion via resource-use efficiency and other poorly defined mechanisms of protection from pathogens in their invaded range. This report exposes a potentially significant but previously unappreciated fungal dimension of a complex invasion system and underscores the need to characterize these fungal symbionts, their role and mode of action during invasion; with the goal of devising measures for invasion control and ecological restoration.
Frontiers in Microbiology | 2018
Karim Dawkins; Nwadiuto Esiobu
Little is known about the rhizosphere microbiome of the Brazilian pepper tree (BP) – a noxious category 1 invasive plant inducing an enormous economic and ecological toll in Florida. Some invasive plants have been shown to drastically change the soil microbiome compared to other native plants. The rhizobacteria community structure of BP, two Florida native plants (Hamelia patens and Bidens alba) and bulk soils were characterized across six geographical sites. Although all 19 well-known and 10 poorly described phyla were observed in all plant rhizospheres, BP contained the least total bacterial abundance (OTUs) with a distinct bacteria community structure and clustering patterns differing significantly (pCOA and PERMANOVA) from the natives and bulk soil. The BP rhizosphere community contained the highest overall Proteobacteria diversity (Shannon’s diversity 3.25) in spite of a twofold reduction in richness of the Gammaproteobacteria. Remarkably, the invasive BP rhizosphere was highly enriched with Alphaproteobacteria, dominated by Rhizobiales, including Rhodoplanes and Bradyrhizobiaceae. Also, the relative abundance of Spartobacteria under BP rhizosphere was more than twice that of native plants and bulk soil; featuring unique members of the family Chthoniobacteraceae (DA101 genus). The trend was different for the family Pedosphaerae in the phylum Verrucomicrobia where the abundance declined under BP (26%) compared to (33–66%) for the H. patens native plant and bulk soil. BP shared the lowest number of unique phylotypes with bulk soil (146) compared to the other native plants with bulk soil (B. alba – 222, H. patens – 520) suggestive of its capacity to overcome biotic resistance. Although there were no specific biomarkers found, taken together, our data suggests that the occurrence of key bacteria groups across multiple taxonomic ranks provides a somewhat consistent profile of the invasive BP rhizo-community. Furthermore, based on the observed prevalence of a bacteria group (Spartobacteria – Chthoniobacteraceae – DA101); we propose that they have a possible role in BP biology. Our results emphasize the need to further investigate the potential value of “unique phylotypes” in the rhizosphere relative to bulk soil as an ecological tool for monitoring plant-cover/invasion history; or even detecting exotic plants with invasion tendencies.
Botanical Studies | 2017
Abubakar Ibrahim; Xiao-Lu Jin; Yu-Bin Zhang; Jessica Cruz; Paveena Vichyavichien; Nwadiuto Esiobu; Xing-Hai Zhang
BackgroundNitrate uptake is a highly regulated process. Understanding the intricate interactions between nitrate availability and genetically-controlled nitrate acquisition and metabolism is essential for improving nitrogen use efficiency and increasing nitrate uptake capacity for plants grown in both nitrate-poor and nitrate-enriched environments. In this report, we introduced into tobacco (Nicotiana tabacum) the constitutively expressed maize high-affinity transporter ZmNrt2.1 gene that would bypass the tight control for the endogenous nitrate-responsive genes. By using calcium inhibitors and varying levels of NO3−, Ca2+ and K+, we probed how the host plants were affected in their nitrate response.ResultsWe found that the ZmNrt2.1-expressing plants had better root growth than the wild type plants when Ca2+ was deficient regardless of the nitrate levels. The growth restriction associated with Ca2+-deficiency can be alleviated with a high level of K+. Furthermore, the transgenic plants exhibited altered expression patterns of several endogenous, nitrate-responsive genes, including the high- and low-affinity nitrate transporters, the Bric-a-Brac/Tramtrack/Broad protein BT2 and the transcription factor TGA-binding protein TGA1, in responding to treatments of NO3−, K+ or inhibitors for the calcium channel and the cytosolic Ca2+-regulating phospholipase C, as compared to the wild type plants under the same treatments. Their expression was not only responsive to nitrate, but also affected by Ca2+. There were also different patterns of gene expression between roots and shoots.ConclusionOur results demonstrate the ectopic effect of the maize nitrate transporter on the host plant’s overall gene expression of nitrate sensing system, and further highlight the involvement of calcium in nitrate sensing in tobacco plants.