Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where O.J. Ginther is active.

Publication


Featured researches published by O.J. Ginther.


Animal Reproduction Science | 1989

Composition and Characteristics of Follicular Waves during the Bovine Estrous Cycle

O.J. Ginther; J.P. Kastelic; L. Knopf

The characteristics of anovulatory and ovulatory follicular waves for 18 interovulatory intervals with two waves were studied in Holstein heifers. Daily ultrasonic monitoring of individually identified follicles was used. Waves were detectable retrospectively as a cohort of 4 to 6 mm follicles on a mean of day 0 (day of ovulation) for the anovulatory wave and day 10 for the ovulatory wave. For each wave, the follicles which became dominant versus subordinate did not differ in diameter on the first day of the wave, but the dominant follicle was significantly larger than the subordinates on the following day. On the average, the subordinates ceased growing 4.4 days after the origin of a wave. The dominant follicle of the anovulatory wave grew linearly (1.8 ± 0.1 mm/day) to an average of 15.8 ± 0.5 mm, remained static for a mean of 6 days and then regressed linearly (−1.0 ± 0.1 mm/day). The dominant ovulatory follicle grew slower (P<0.0001) (linear slope, 1.2 ± 0.1 mm/day) than the dominant anovulatory follicle. The diameter of the ovulatory follicle on the day before ovulation (16.2 ± 0.4 mm) was not different from the diameter of the dominant anovulatory follicle during the static phase. The numbers of growing, static and regressing 4 to 6 mm identified follicles did not differ between anovulatory and ovulatory waves. Ninety-five percent of the growing identified follicles were assignable to a wave (follicles emerging within two days of each other) and each wave emerged during a consistent and narrow time period (anovulatory wave, days −1, 0, or 1; ovulatory wave, days 8, 9, 10, or 11). It was concluded, therefore, that the formation of waves was a well-controlled phenomenon. There was a consistent temporal relationship between emergence of the ovulatory wave and onset of regression of the dominant follicle of the anovulatory wave (length of interval from beginning of ovulatory wave to beginning of regression of anovulatory follicle, approximately 3 days). Perhaps, therefore, the mechanism that caused regression of the subordinate follicles of the ovulatory wave also caused regression of the large, static, dominant follicle of the anovulatory wave.


Theriogenology | 1984

Ultrasonography of the bovine ovary

R.A. Pierson; O.J. Ginther

A linear-array ultrasound scanner with a 5-MHz transducer was evaluated for the study of follicular and luteal status in heifers. The ovaries of five heifers were monitored daily until all heifers were examined for a period from three days before an ovulation to three days after the next ovulation. There was a significant difference among days for diameter of the largest follicle and second largest follicle and for the number of follicles 4-6 mm and >10 mm. Differences seemed to be caused by the presence of several 4- to 6-mm follicles in early diestrus, growth to an ostensibly ovulatory size and subsequent regression of a follicle during mid-cycle, and selective accelerated growth of the ovulatory follicle four days before ovulation. The corpus luteum became visible approximately three days after ovulation and was identifiable throughout the rest of the interovulatory interval. In two of the five heifers, the corresponding corpus albicans was identified for three days after the second ovulation. Two heifers were induced to superovulate and follicular growth was monitored. The results indicated that the follicles which ovulated originated from the population present when the superovulation treatment was initiated. The ultrasound instrument was judged effective for monitoring and evaluating ovarian follicles and corpora lutea in normal and superovulated heifers.


Biology of Reproduction | 2001

Follicular deviation and acquisition of ovulatory capacity in bovine follicles.

R. Sartori; P.M. Fricke; João C.P. Ferreira; O.J. Ginther; M.C. Wiltbank

Abstract Selection of dominant follicles in cattle is associated with a deviation in growth rate between the dominant and largest subordinate follicle of a wave (diameter deviation). To determine whether acquisition of ovulatory capacity is temporally associated with diameter deviation, cows were challenged with purified LH at known times after a GnRH-induced LH surge (experiment 1) or at known follicular diameters (experiments 2 and 3). A 4-mg dose of LH induced ovulation in all cows when the largest follicle was ≥12 mm (16 of 16), in 17% (1 of 6) when it was 11 mm, and no ovulation when it was ≤10 mm (0 of 19). To determine the effect of LH dose on ovulatory capacity, follicular dynamics were monitored every 12 h, and cows received either 4 or 24 mg of LH when the largest follicle first achieved 10 mm in diameter (experiment 2). The proportion of cows ovulating was greater (P < 0.05) for the 24-mg (9 of 13; 69.2%) compared with the 4-mg (1 of 13; 7.7%) LH dose. To determine the effect of a higher LH dose on follicles near diameter deviation, follicular dynamics were monitored every 8 h, and cows received 40 mg of LH when the largest follicle first achieved 7.0, 8.5, or 10.0 mm (experiment 3). No cows with a follicle of 7 mm (0 of 9) or 8.5 mm (0 of 9) ovulated, compared with 80% (8 of 10) of cows with 10-mm follicles. Thus, follicles acquired ovulatory capacity at about 10 mm, corresponding to about 1 day after the start of follicular deviation, but they required a greater LH dose to induce ovulation compared with larger follicles. We speculate that acquisition of ovulatory capacity may involve an increased expression of LH receptors on granulosa cells of the dominant follicle and that this change may also be important for further growth of the dominant follicle.


Theriogenology | 1994

Follicular dynamics during the ovulatory season in goats

O.J. Ginther; K. Kot

Growth and regression of ovarian follicles>or=3 mm were studied by transrectal ultrasonography for 4 interovulatory intervals in each of 5 Saanen goats. The observed number of growing identified 4-mm follicles per day differed (P<0.05) from randomness, indicating that follicles, on the average, emerged in groups (waves). Averaged over all interovulatory intervals, the number of 3-mm follicles on each day that later reached >or=6 mm followed a pattern of significant peaks on Days 0 (ovulation), 4,8 and 14. A follicular wave was defined by consecutive days of entry of follicles>or=6 mm into the wave, and the day of emergence was defined as the first day that the >or=6 mm follicles were 3 mm. In 15 of 20 (75%) interovulatory intervals, 1 wave emerged during each of Day -2 to Day 1 (Wave 1); Days 2 to 5 (Wave 2); Days 6 to 9 (Wave 3); and Days 10 to 15 (Wave 4). Ovulation occurred during Wave 4. The mean days of emergence of Waves 1 to 4 were Days -1, 4, 8 and 13, respectively. However, in 5 of these 15 interovulatory intervals, 50% of the apparent waves merged or were continuous so that a distinction could not be made between 2 waves. The largest follicle grew to a larger (P<0.05) maximum diameter for Waves 1 (8.7+/-0.3 mm) and 4 (9.7+/-0.3 mm) than for Waves 2 (7.2+/-0.2 mm) and 3 (7.3+/-0.2 mm). The following observations suggested that the phenomenon of follicular dominance was more common during Waves 1 and 4 than during Waves 2 and 3: 1) the interwave intervals (days) were longer (P<0.05) for Waves 1 (3.4+/-0.2) and 4 (4.3+/-0.6) than for Waves 2 and 3 (2.5+/-0.2 for each wave) and 2) the correlation between maximum diameter of largest follicle and the subsequent interwave interval was significant for Waves 1 and 4 but not for Waves 2 and 3. The 5 remaining interovulatory intervals were irregular and involved more than 4 waves, including 2 interovulatory intervals with prolonged follicular phases (14 and 21) and failures of ovulation. In conclusion, the predominant follicular-wave pattern was 4 waves with ovulation from Wave 4, and apparent follicular dominance was expressed during some follicular waves, especially during Waves 1 and 4.


Theriogenology | 1997

Emergence and deviation of follicles during the development of follicular waves in cattle

O.J. Ginther; K. Kot; L.J. Kulick; M.C. Wiltbank

The nature of emergence and deviation of follicles during follicular waves in cattle was studied in 3 experiments by re-examining data from previous projects. Wave emergence was defined as the day or examination (when more than 1 examination per day) the future dominant follicle was 4 mm (Day 0 or Examination 0). Deviation was defined as the beginning of the greatest difference in growth rates between the 2 largest follicles and between 2 consecutive examinations. The search for deviation in an individual wave was done retrospectively from the examination with the maximum diameter of the second largest follicle. In Experiment 1, follicles were assessed ultrasonically for 28 waves every 8 h. The number of examinations that encompassed the emergence of all growing 3-mm follicles was 10.0 +/-0.5 (mean +/-SEM; equivalent to 3.3 d) and extended from mean Examination -3.1 +/-0.3 to mean Examination 6.0 +/-0.6. A mean of 24 growing 3-mm follicles was found, and the maximal attained diameters were 4 mm (46%), 5 mm (25%), and >/=6 mm (29%). More (P<0.05) 3-mm follicles at Examinations -2 and -1 grew to >/=6 mm than to 4 or 5 mm, whereas more 3-mm follicles at Examinations 2 to 6 grew to only 4 mm. On average, the future dominant follicle appeared as a 3-mm follicle (Examination -2.1 +/-0.2) 6 and 10 h earlier (P<0.03) than for the largest (Examination -1.4 +/-0.3) and second-largest (Examination -0.8 +/-0.4) future subordinates, respectively. This result supported the hypothesis that the future dominant follicle has, on the average, an early developmental advantage. In Experiment 2 (n=33 waves), data were normalized to the day at the beginning of deviation (Day 2.8 +/-0.2) when the mean diameters of the dominant and largest subordinate follicle were 8.5 +/-0.2 mm and 7.2 +/-0.2 mm, respectively. This result suggests that the follicle selected to become dominant, as manifested by deviation, is the first follicle to develop to a decisive stage. In Experiment 3 (n=19 waves), FSH concentrations were lower (P<0.05) on the day at the beginning of deviation (8.5 +/-0.5 ng/ml) than on the day before (10.1 +/-0.8 ng/ml), with no continuing decrease after deviation. This temporal result suggests that the attainment of approximate basal levels of FSH is a component of the deviation mechanism.


Animal Reproduction Science | 2003

Mechanism of follicle deviation in monovular farm species

O.J. Ginther; M.A. Beg; F.X. Donadeu; D.R. Bergfelt

Diameter deviation is a distinctive change in growth rates among the follicles of a wave, heralding the formation of a dominant follicle and subordinate follicles. When the follicles are about 5mm in cattle and 13 mm in horses, the wave-stimulating FSH surge reaches peak concentrations. Follicle and FSH manipulation studies in both species have shown that the declining portion of the surge before the beginning of deviation is a function of multiple growing follicles that require the decreasing FSH. During this time, all follicles of the wave have the potential for future dominance. Deviation begins when the two largest follicles on average are 8.5 and 7.7 mm in cattle and 22.5 and 19.0 mm in horses or about 3 days after the FSH peak in both species. The FSH/follicle relationship is close so that a change in one event soon causes a detectable change in the other. Thus, the difference in diameter between the two largest follicles at the beginning of deviation is compatible with rapid establishment of the destiny of the two follicles before the second-largest follicle can also show dominance. The deviation mechanism is initiated when FSH concentrations are low and the most advanced follicle reaches a specific developmental stage. In cattle, the future dominant follicle develops greater LH-receptor expression than the other follicles about 8 h before the beginning of diameter deviation. Estradiol and free IGF-1 begin to establish higher concentrations in the future dominant follicle than in other follicles and activin-A is transiently elevated in both follicles a few hours before the beginning of diameter deviation. In horses, estradiol, free IGF-1, activin-A, and inhibin-A begin to increase differentially in the future dominant follicle about 1 day before deviation. These changes underlie a greater responsiveness to LH and FSH by the developing dominant follicle than for other follicles, thereby accounting for deviation. Results of in vitro studies, although frequently done in other species, support this conclusion.


Animal Reproduction Science | 1993

Selection of a dominant follicle and suppression of follicular growth in heifers

G.P. Adams; K. Kot; C.A. Smith; O.J. Ginther

Abstract The following aspects of follicle-stimulating hormone (FSH)-follicular relationships were studied in heifers: (1) the role of the decline in circulating levels of FSH in selection of a dominant follicle of a follicular wave; (2) the relationship of an FSH nadir (low levels between surges) to the absence of development of new follicles of a detectable diameter during the interim between the emergence of successive waves. A recombinant DNA-derived bovine FSH was used. Administration of bovine follicle-stimulating hormone (bFSH) for two days before the time of selection of the dominant follicle of the first post-ovulatory follicular wave delayed the time of divergence of the follicles into dominant and subordinates (first significant divergence: bFSH treatment before selection, Day 4.0; bFSH treatment after selection, Day 2.5; controls, Day 2.5: ovulation, Day 0). Significantly greater growth of the first and second largest subordinates occurred in the pre-selection group. A superovulatory dose of bFSH for 4 days with PGF2α-induction of luteolysis resulted in multiple ovulations when begun on Day 1 (before the expected time of follicle divergence; mean 2.8 ovulations per heifer) than when begun on Day 5 (after divergence; mean 1.0 ovulation per heifer). Administration of bFSH during the expected time (Days 5 and 6) of an FSH nadir did not alter the day of detectable emergence of the next follicular wave. Results supported the following hypotheses: (1) a decline in the wave-stimulating FSH surge is an integral component of the selection mechanism that results in the divergence into dominant and subordinate follicles; (2) the nadir between FSH surges does not account directly for the absence of the development of new follicles between the emergence of waves.


Theriogenology | 1995

ASSOCIATIONS BETWEEN EMERGENCE OF FOLLICULAR WAVES AND FLUCTUATIONS IN FSH CONCENTRATIONS DURING THE ESTROUS CYCLE IN EWES

O.J. Ginther; K. Kot; M.C. Wiltbank

Folliculogenesis was studied daily in 16 interovulatory intervals in 5 Polypay ewes from mid February through April using transrectal ultrasonic imaging. The 3-mm follicles attaining > or = 5 mm on Days--1 (ovulation=Day 0) to 11 showed significant peak numbers on Days 0, 5 and 10. The number of 3- and 4-mm follicles that did not reach > 4 mm was not significant, indicating that these follicles did not manifest a wave pattern. A follicular wave was defined as one or more follicles growing to > or = 5 mm; the day the follicles were 3 mm was the day of wave emergence, and the first wave after ovulation was Wave 1. Waves 1, 2 and 3 emerged on Days -1 to 2,4 to 7 and 8 to 10, respectively. Four interovulatory intervals in April were short (9 to 14 d), indicating the end of the ovulatory season. In the remaining 12 intervals, the ovulatory wave was Wave 3 in one interval, Wave 4 in 8 intervals, and Wave 5 or 6 in 3 intervals. The ovulatory wave followed the rhythmic pattern of Waves 1 to 3 by emerging on Days 11 to 14 in 50% of the intervals. In the remaining intervals, either the ovulatory wave was Wave 4 but did not emerge until Day 16 or other waves intervened between Wave 3 and the ovulatory wave. The longest intervals (22, 24 and 24 d) had >4 waves. Based on a cycle-detection program, peak values of FSH fluctuations were temporally associated with the emergence of waves as indicated by the following: 1) tendency (P < 0.08) for an increase in FSH concentrations between 3 and 2 days before emergence of a wave; 2) close agreement between mean number of waves per interval (mean +/- SEM, 4.1 +/- 0.3) and mean number of identified FSH fluctuations (4.5 +/- 0.3); 3) close agreement in length of interwave intervals (4.0 +/- 0.3) and interpeak (FSH) intervals (3.6 +/- 0.2); 4) positive correlation (r(2)=0.8) for number of the 2 events (follicular waves and FSH fluctuations) within intervals; and 5) a closer (P < 0.01) temporal relationship between the 2 events than would have been expected if the events were independent. The results support a relationship between transient increases in FSH concentrations and emergence of follicular waves throughout the interovulatory interval in Polypay ewes, with the 2 events occurring approximately every 4 d.


Theriogenology | 1990

Relationship between ultrasonic assessment of the corpus luteum and plasma progesterone concentration in heifers.

J.P. Kastelic; D.R. Bergfelt; O.J. Ginther

Abstract In nulliparous Holstein heifers, ultrasonography was used to measure cross-sectional areas of corpora lutea, central luteal cavities and luteal tissue on Days 2, 5, 8, and 11 and daily on Days 14 to 21 (pregnant heifers, n = 7) or Day 14 to the day of the subsequent ovulation (nonbred and bred nonpregnant heifers, n = 7 and n = 8, respectively). A blood sample for progesterone assay was collected prior to each ultrasound examination. Combined for the three reproductive statuses, luteal tissue area and plasma progesterone concentration increased (P


Theriogenology | 1999

FOLLICULAR AND HORMONAL DYNAMICS DURING THE FIRST FOLLICULAR WAVE IN HEIFERS

L.J. Kulick; K. Kot; M.C. Wiltbank; O.J. Ginther

A few days after the first follicular wave emerges as 4-mm follicles, follicular deviation occurs wherein 1 follicle of the wave continues to grow (dominant follicle) while the others regress. The objectives of this study were to characterize follicle growth and associated changes in systemic concentrations of gonadotropins and estradiol at 8-h intervals encompassing the time of follicle deviation. Blood samples from heifers (n = 11) were collected and the ovaries scanned by ultrasound every 8 h from 48 h before to 112 h after the maximal value for the preovulatory LH surge. The follicular wave emerged at 5.8 +/- 5.5 h (mean +/- SEM) after the LH surge, and at this time the future dominant follicle (4.2 +/- 0.8 mm) was larger (P < 0.001) than the future largest subordinate follicle (3.6 +/- 0.1 mm). There was no difference in growth rates between the 2 follicles from emergence to the beginning of the deviation (0.5 mm/8 h for each follicle), indicating that, on average, the future dominant follicle maintained a size advantage over the future subordinate follicle. Deviation occurred when the 2 largest follicles were 8.3 +/- 0.2 and 7.8 +/- 0.2 mm in diameter, at 61.0 +/- 3.7 h after wave emergence. Diameter deviation was manifested between 2 adjacent examinations at 8-h intervals. Mean concentrations of FSH decreased, while mean concentrations of LH increased 24 and 32 h before deviation, respectively, and remained constant (no significant differences) for several 8-h intervals encompassing deviation. In addition to the increase and decrease in circulating estradiol concentrations associated with the preovulatory LH surge, an increase (P < 0.05) occurred between the beginning of deviation and 32 h after deviation. The results supported the hypotheses that deviation occurs rapidly (within 8 h), that elevated systemic LH concentrations are present during deviation, and that deviation is not preceded by an increase in systemic estradiol.

Collaboration


Dive into the O.J. Ginther's collaboration.

Top Co-Authors

Avatar

M.A. Beg

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

E.L. Gastal

Southern Illinois University Carbondale

View shared research outputs
Top Co-Authors

Avatar

M.O. Gastal

Southern Illinois University Carbondale

View shared research outputs
Top Co-Authors

Avatar

D.R. Bergfelt

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

K. Kot

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

M.C. Wiltbank

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

R.A. Pierson

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

J.M. Baldrighi

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

M.A.R. Siddiqui

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

J.P. Kastelic

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge