Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where O. Lloyd May is active.

Publication


Featured researches published by O. Lloyd May.


Genetics | 2007

Meta-analysis of Polyploid Cotton QTL Shows Unequal Contributions of Subgenomes to a Complex Network of Genes and Gene Clusters Implicated in Lint Fiber Development

Junkang Rong; F. Alex Feltus; Vijay N. Waghmare; Gary J. Pierce; Peng W. Chee; Xavier Draye; Yehoshua Saranga; Robert J. Wright; Thea A. Wilkins; O. Lloyd May; C. Wayne Smith; John R. Gannaway; Jonathan F. Wendel; Andrew H. Paterson

QTL mapping experiments yield heterogeneous results due to the use of different genotypes, environments, and sampling variation. Compilation of QTL mapping results yields a more complete picture of the genetic control of a trait and reveals patterns in organization of trait variation. A total of 432 QTL mapped in one diploid and 10 tetraploid interspecific cotton populations were aligned using a reference map and depicted in a CMap resource. Early demonstrations that genes from the non-fiber-producing diploid ancestor contribute to tetraploid lint fiber genetics gain further support from multiple populations and environments and advanced-generation studies detecting QTL of small phenotypic effect. Both tetraploid subgenomes contribute QTL at largely non-homeologous locations, suggesting divergent selection acting on many corresponding genes before and/or after polyploid formation. QTL correspondence across studies was only modest, suggesting that additional QTL for the target traits remain to be discovered. Crosses between closely-related genotypes differing by single-gene mutants yield profoundly different QTL landscapes, suggesting that fiber variation involves a complex network of interacting genes. Members of the lint fiber development network appear clustered, with cluster members showing heterogeneous phenotypic effects. Meta-analysis linked to synteny-based and expression-based information provides clues about specific genes and families involved in QTL networks.


Theoretical and Applied Genetics | 2005

Genetic mapping and comparative analysis of seven mutants related to seed fiber development in cotton

Junkang Rong; Gary J. Pierce; Vijay N. Waghmare; Carl J. Rogers; Aparna Desai; Peng W. Chee; O. Lloyd May; John R. Gannaway; Jonathan F. Wendel; Thea A. Wilkins; Andrew H. Paterson

Mapping of genes that play major roles in cotton fiber development is an important step toward their cloning and manipulation, and provides a test of their relationships (if any) to agriculturally-important QTLs. Seven previously identified fiber mutants, four dominant (Li1, Li2, N1 and Fbl) and three recessive (n2, sma-4(ha), and sma-4(fz)), were genetically mapped in six F2 populations comprising 124 or more plants each. For those mutants previously assigned to chromosomes by using aneuploids or by linkage to other morphological markers, all map locations were concordant except n2, which mapped to the homoeolog of the chromosome previously reported. Three mutations with primary effects on fuzz fibers (N1, Fbl, n2) mapped near the likelihood peaks for QTLs that affected lint fiber productivity in the same populations, perhaps suggesting pleiotropic effects on both fiber types. However, only Li1 mapped within the likelihood interval for 191 previously detected lint fiber QTLs discovered in non-mutant crosses, suggesting that these mutations may occur in genes that played early roles in cotton fiber evolution, and for which new allelic variants are quickly eliminated from improved germplasm. A close positional association between sma-4(ha), two leaf and stem-borne trichome mutants (t1, t2), and a gene previously implicated in fiber development, sucrose synthase, raises questions about the possibility that these genes may be functionally related. Increasing knowledge of the correspondence of the cotton and Arabidopsis genomes provides several avenues by which genetic dissection of cotton fiber development may be accelerated.


Journal of Heredity | 2008

Correspondence of Trichome Mutations in Diploid and Tetraploid Cottons

Aparna Desai; Peng W. Chee; O. Lloyd May; Andrew H. Paterson

Quantitative variation for leaf trichome number is observed within and among Gossypium species, varying from glabrous to densely pubescent phenotypes. Moreover, economically important cotton lint fibers are modified trichomes. Earlier studies have mapped quantitative trait loci (QTLs) affecting leaf pubescence in Gossypium using allotetraploids. In this study, we mapped genes responsible for leaf trichome density in a diploid A genome cross. We were able to map 3 QTLs affecting leaf pubescence based on trichome counts obtained from young leaves (YL) and mature leaves (ML). When the F(2) progeny were classified as pubescent versus glabrous, their ratio did not deviate significantly from a 3:1 model, suggesting that glabrousness is inherited in a simple Mendelian fashion. The glabrous mutation mapped to linkage group A3 at the position of major QTL YL1 and ML1 and appeared orthologous to the t1 locus of the allotetraploids. Interestingly, a fiber mutation, sma-4(ha), observed in the same F(2) population cosegregated with the glabrous marker, which indicates either close linkage or common genetic control of lint fiber and leaf trichomes. Studies of A genome diploids may help to clarify the genetic control of trichomes and fiber in both diploid and tetraploid cottons.


G3: Genes, Genomes, Genetics | 2016

A Genetic Map Between Gossypium hirsutum and the Brazilian Endemic G. mustelinum and Its Application to QTL Mapping.

Baohua Wang; Limei Liu; Dong Zhang; Zhimin Zhuang; Hui Guo; Xin Qiao; Lijuan Wei; Junkang Rong; O. Lloyd May; Andrew H. Paterson; Peng W. Chee

Among the seven tetraploid cotton species, little is known about transmission genetics and genome organization in Gossypium mustelinum, the species most distant from the source of most cultivated cotton, G. hirsutum. In this research, an F2 population was developed from an interspecific cross between G. hirsutum and G. mustelinum (HM). A genetic linkage map was constructed mainly using simple sequence repeat (SSRs) and restriction fragment length polymorphism (RFLP) DNA markers. The arrangements of most genetic loci along the HM chromosomes were identical to those of other tetraploid cotton species. However, both major and minor structural rearrangements were also observed, for which we propose a parsimony-based model for structural divergence of tetraploid cottons from common ancestors. Sequences of mapped markers were used for alignment with the 26 scaffolds of the G. hirsutum draft genome, and showed high consistency. Quantitative trait locus (QTL) mapping of fiber elongation in advanced backcross populations derived from the same parents demonstrated the value of the HM map. The HM map will serve as a valuable resource for QTL mapping and introgression of G. mustelinum alleles into G. hirsutum, and help clarify evolutionary relationships between the tetraploid cotton genomes.


Theoretical and Applied Genetics | 2017

QTL analysis of cotton fiber length in advanced backcross populations derived from a cross between Gossypium hirsutum and G. mustelinum

Baohua Wang; Xavier Draye; Zhimin Zhuang; Zhengsheng Zhang; Min Liu; Edward L. Lubbers; Don C. Jones; O. Lloyd May; Andrew H. Paterson; Peng W. Chee

Key messageQTLs for fiber length mapped in three generations of advanced backcross populations derived from crossing Gossypium hirsutum and Gossypium mustelinum showed opportunities to improve elite cottons by introgression from wild relatives.AbstractThe molecular basis of cotton fiber length in crosses between Gossypium hirsutum and Gossypium mustelinum was dissected using 21 BC3F2 and 12 corresponding BC3F2:3 and BC3F2:4 families. Sixty-five quantitative trait loci (QTLs) were detected by one-way analysis of variance. The QTL numbers detected for upper-half mean length (UHM), fiber uniformity index (UI), and short fiber content (SFC) were 19, 20, and 26 respectively. Twenty-three of the 65 QTLs could be detected at least twice near adjacent markers in the same family or near the same markers across different families/generations, and 32 QTLs were detected in both one-way variance analyses and mixed model-based composite interval mapping. G. mustelinum alleles increased UHM and UI and decreased SFC for five, one, and one QTLs, respectively. In addition to the main-effect QTLs, 17 epistatic QTLs were detected which helped to elucidate the genetic basis of cotton fiber length. Significant among-family genotypic effects were detected at 18, 16, and 16 loci for UHM, UI, and SFC, respectively. Six, two, and two loci showed genotype × family interaction for UHM, UI and SFC, respectively, illustrating complexities that might be faced in introgression of exotic germplasm into cultivated cotton. Co-location of many QTLs for UHM, UI, and SFC accounted for correlations among these traits, and selection of these QTLs may improve the three traits simultaneously. The simple sequence repeat (SSR) markers associated with G. mustelinum QTLs will assist breeders in transferring and maintaining valuable traits from this exotic source during cultivar development.


Theoretical and Applied Genetics | 2017

Segregation distortion and genome-wide digenic interactions affect transmission of introgressed chromatin from wild cotton species

Rahul Chandnani; Baohua Wang; Xavier Draye; Lisa K. Rainville; Susan Auckland; Zhimin Zhuang; Edward L. Lubbers; O. Lloyd May; Peng W. Chee; Andrew H. Paterson

Key messageThis study reports transmission genetics of chromosomal segments intoGossypium hirsutumfrom its most distant euploid relative,Gossypium mustelinum. Mutilocus interactions and structural rearrangements affect introgression and segregation of donor chromatin.AbstractWild allotetraploid relatives of cotton are a rich source of genetic diversity that can be used in genetic improvement, but linkage drag and non-Mendelian transmission genetics are prevalent in interspecific crosses. These problems necessitate knowledge of transmission patterns of chromatin from wild donor species in cultivated recipient species. From an interspecific cross, Gossypium hirsutum × Gossypium mustelinum, we studied G. mustelinum (the most distant tetraploid relative of Upland cotton) allele retention in 35 BC3F1 plants and segregation patterns in BC3F2 populations totaling 3202 individuals, using 216 DNA marker loci. The average retention of donor alleles across BC3F1 plants was higher than expected and the average frequency of G. mustelinum alleles in BC3F2 segregating families was less than expected. Despite surprisingly high retention of G. mustelinum alleles in BC3F1, 46 genomic regions showed no introgression. Regions on chromosomes 3 and 15 lacking introgression were closely associated with possible small inversions previously reported. Nonlinear two-locus interactions are abundant among loci with single-locus segregation distortion, and among loci originating from one of the two subgenomes. Comparison of the present results with those of prior studies indicates different permeability of Upland cotton for donor chromatin from different allotetraploid relatives. Different contributions of subgenomes to two-locus interactions suggest different fates of subgenomes in the evolution of allotetraploid cottons. Transmission genetics of G. hirsutum × G. mustelinum crosses reveals allelic interactions, constraints on fixation and selection of donor alleles, and challenges with retention of introgressed chromatin for crop improvement.


Frontiers in Plant Science | 2017

Advanced Backcross QTL Analysis of Fiber Strength and Fineness in a Cross between Gossypium hirsutum and G. mustelinum

Baohua Wang; Zhimin Zhuang; Zhengsheng Zhang; Xavier Draye; Lan-shuan Shuang; Tariq Shehzad; Edward L. Lubbers; Don C. Jones; O. Lloyd May; Andrew H. Paterson; Peng W. Chee

The molecular genetic basis of cotton fiber strength and fineness in crosses between Gossypium mustelinum and Gossypium hirsutum (Upland cotton) was dissected using 21 BC3F2 and 12 corresponding BC3F2:3 and BC3F2:4 families. The BC3F2 families were genotyped with simple sequence repeat markers from a G. hirsutum by G. mustelinum linkage map, and the three generations of BC3-derived families were phenotyped for fiber strength (STR) and fineness (Micronaire, MIC). A total of 42 quantitative trait loci (QTLs) were identified through one-way analysis of variance, including 15 QTLs for STR and 27 for MIC, with the percentage of variance explained by individual loci averaging 13.86 and 14.06%, respectively. Eighteen of the 42 QTLs were detected at least twice near the same markers in different generations/families or near linked markers in the same family, and 28 of the 42 QTLs were identified in both mixed model-based composite interval mapping and one-way variance analyses. Alleles from G. mustelinum increased STR for eight of 15 and reduced MIC for 15 of 27 QTLs. Significant among-family genotypic effects (P < 0.001) were detected in 13 and 10 loci for STR and MIC respectively, and five loci showed significant (P < 0.001) genotype × family interaction for MIC. These results support the hypothesis that fiber quality improvement for Upland cotton could be realized by introgressing G. mustelinum alleles although complexities due to the different effects of genetic background on introgressed chromatin might be faced. Building on prior work with G. barbadense, G. tomentosum, and G. darwinii, QTL mapping involving introgression of G. mustelinum alleles offers new allelic variation to Upland cotton germplasm.


Crop Science | 1996

Genetic base of upland cotton cultivars released between 1970 and 1990

D. T. Bowman; O. Lloyd May; D. Steve Calhoun


Crop Science | 1995

Genetic Diversity of U.S. Upland Cotton Cultivars Released between 1980 and 1990

O. Lloyd May; D. T. Bowman; D. Steve Calhoun


Genome | 2006

Chromosome structural changes in diploid and tetraploid A genomes of Gossypium

Aparna Desai; Peng W. Chee; Junkang Rong; O. Lloyd May; Andrew H. Paterson

Collaboration


Dive into the O. Lloyd May's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xavier Draye

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge