Ø. Midttun
CERN
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ø. Midttun.
Review of Scientific Instruments | 2014
J. Lettry; Davide Aguglia; P. Andersson; S. Bertolo; A. Butterworth; Y. Coutron; Alessandro Dallocchio; E. Chaudet; J. Gil-Flores; R. Guida; J. Hansen; A. Hatayama; I. Koszar; E. Mahner; C. Mastrostefano; S. Mathot; Stefano Mattei; Ø. Midttun; P. Moyret; D. Nisbet; K. Nishida; M. O’Neil; M. Ohta; M. Paoluzzi; C. Pasquino; H. Pereira; J. Rochez; J. Sanchez Alvarez; J. Sanchez Arias; R. Scrivens
CERNs Linac4 45 kV H(-) ion sources prototypes are installed at a dedicated ion source test stand and in the Linac4 tunnel. The operation of the pulsed hydrogen injection, RF sustained plasma, and pulsed high voltages are described. The first experimental results of two prototypes relying on 2 MHz RF-plasma heating are presented. The plasma is ignited via capacitive coupling, and sustained by inductive coupling. The light emitted from the plasma is collected by viewports pointing to the plasma chamber wall in the middle of the RF solenoid and to the plasma chamber axis. Preliminary measurements of optical emission spectroscopy and photometry of the plasma have been performed. The design of a cesiated ion source is presented. The volume source has produced a 45 keV H(-) beam of 16-22 mA which has successfully been used for the commissioning of the Low Energy Beam Transport (LEBT), Radio Frequency Quadrupole (RFQ) accelerator, and chopper of Linac4.
THIRD INTERNATIONAL SYMPOSIUM ON NEGATIVE IONS, BEAMS AND SOURCES (NIBS 2012) | 2013
J. Lettry; Davide Aguglia; Y. Coutron; E. Chaudet; Alessandro Dallocchio; J. Gil Flores; J. Hansen; E. Mahner; S. Mathot; Stefano Mattei; Ø. Midttun; P. Moyret; D. Nisbet; M. O'Neil; M. Paoluzzi; C. Pasquino; Hélder Pereira; J. Sanchez Arias; C. Schmitzer; R. Scrivens; D. Steyaert
The specifications set to the Linac4 ion source are: H− ion pulses of 0.5 ms duration, 80 mA intensity and 45 keV energy within a normalized emittance of 0.25 mmmrad RMS at a repetition rate of 2 Hz. In 2010, during the commissioning of a prototype based on H− production from the plasma volume, it was observed that the powerful co-extracted electron beam inherent to this type of ion source could destroy its electron beam dump well before reaching nominal parameters. However, the same source was able to provide 80 mA of protons mixed with a small fraction of H2+ and H3+ molecular ions. The commissioning of the radio frequency quadrupole accelerator (RFQ), beam chopper and H− beam diagnostics of the Linac4 are scheduled for 2012 and its final installation in the underground building is to start in 2013. Therefore, a crash program was launched in 2010 and reviewed in 2011 aiming at keeping the original Linac4 schedule with the following deliverables: Design and production of a volume ion source prototype sui...
Review of Scientific Instruments | 2010
Matthias Kronberger; D. Küchler; J. Lettry; Ø. Midttun; M. O’Neil; M. Paoluzzi; R. Scrivens
As part of the CERN accelerator complex upgrade, a new linear accelerator for H(-) (Linac4) will start its operation in 2014. The source for this linac will be a 2 MHz rf driven H(-) source which is a copy of the very successful source from DESY. In this paper the design and the first results of the commissioning are reported. The commissioning has progressed successfully, and no major obstacles have been identified which will prevent reaching the goal of 80 mA H(-) beam current, 45 keV beam energy, 0.4 ms pulse length, and 2 Hz repetition rate. The source is producing up until now a stable beam of 23 mA, 35 keV, and with a repetition rate of 0.83 Hz.
FOURTH INTERNATIONAL SYMPOSIUM ON NEGATIVE IONS, BEAMS AND SOURCES (NIBS 2014) | 2015
J. Lettry; Davide Aguglia; J. Alessi; P. Andersson; S. Bertolo; A. Butterworth; Y. Coutron; Alessandro Dallocchio; N. David; E. Chaudet; D. Fink; J. Gil-Flores; M. Garlasche; A. Grudiev; R. Guida; J. Hansen; M. Haase; A. Hatayama; A. Jones; I. Koszar; T. Lehn; C. Machado; C. Mastrostefano; S. Mathot; Stefano Mattei; Ø. Midttun; P. Moyret; D. Nisbet; K. Nishida; M. O’Neil
Two volume sources equipped with DESY and CERN plasma generators and a low voltage electron dump were operated at 45 kV in the Linac4 tunnel and on a dedicated test stand. These volume sources delivered approximately 20 mA and ensured the commissioning of the Radio Frequency Quadrupole accelerator and of the first section of the Drift Tube Linac. CERN’s prototype of a cesiated surface source equipped with this electron dump was operated continuously from November 2013 to April 2014 on the ion source test stand and is being commissioned in the Linac4 tunnel. Before cesiation, the prototype conditioned in volume mode provided up to 30 mA H− beam. Short cesiations, of the order of 10 mg effectively reduced the intensity of co-extracted electrons down to 2 - 8 times the H− current; this cesiated surface operation mode delivered up to 60 mA H− beam. An H− beam of the order of 40 mA was sustained up to four weeks operation with 500 μs pulses at 1.2s spacing. A new extraction was designed to match these beam pro...
Review of Scientific Instruments | 2010
J. Lettry; Matthias Kronberger; R. Scrivens; E. Chaudet; D. C. Faircloth; Gilles Favre; J.-M. Geisser; D. Küchler; S. Mathot; Ø. Midttun; M. Paoluzzi; Claus Schmitzer; D. Steyaert
CERNs Linac4 is a 160 MeV linear accelerator currently under construction. It will inject negatively charged hydrogen ions into CERNs PS-Booster. Its ion source is a noncesiated rf driven H(-) volume source directly inspired from the one of DESY and is aimed to deliver pulses of 80 mA of H(-) during 0.4 ms at a 2 Hz repetition rate. The Superconducting Proton Linac (SPL) project is part of the luminosity upgrade of the Large Hadron Collider. It consists of an extension of Linac4 up to 5 GeV and is foreseen to deliver protons to a future 50 GeV synchrotron (PS2). For the SPL high power option (HP-SPL), the ion source would deliver pulses of 80 mA of H(-) during 1.2 ms and operate at a 50 Hz repetition rate. This significant upgrade motivates the design of the new water cooled plasma generator presented in this paper. Its engineering is based on the results of a finite element thermal study of the Linac4 H(-) plasma generator that identified critical components and thermal barriers. A cooling system is proposed which achieves the required heat dissipation and maintains the original functionality. Materials with higher thermal conductivity are selected and, wherever possible, thermal barriers resulting from low pressure contacts are removed by brazing metals on insulators. The AlN plasma chamber cooling circuit is inspired from the approach chosen for the cesiated high duty factor rf H(-) source operating at SNS.
Review of Scientific Instruments | 2014
Cristhian A. Valerio-Lizarraga; Jean-Baptiste Lallement; Ildefonso Leon-Monzon; J. Lettry; Ø. Midttun; R. Scrivens
The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H(-) beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.
Review of Scientific Instruments | 2014
Ø. Midttun; J. Lettry; R. Scrivens
Linac4 is a part of the upgrade of CERNs accelerator complex for increased luminosity in the Large Hadron Collider (LHC). A new system to extract the ion beam from the plasma generator has been designed and tested, in order to improve the reliability and beam optics of the pulsed H(-) ion source. This paper presents the successfully implemented extraction system and three different beam measurements. The simulations compare well to the measurements and show that the plasma density was too low for the extraction system design during the measurements.
Review of Scientific Instruments | 2012
Ø. Midttun; Taneli Kalvas; Matthias Kronberger; J. Lettry; H. Pereira; Claus Schmitzer; R. Scrivens
As part of the CERN accelerator complex upgrade, a new linear accelerator for H(-) (Linac4) is under construction. The ion source design is based on the non-caesiated DESY RF-driven ion source, with the goal of producing an H(-) beam of 80 mA beam current, 45 keV beam energy, 0.4 ms pulse length, and 2 Hz repetition rate. The source has been successfully commissioned for an extraction voltage of 35 kV, corresponding to the one used at DESY. Increasing the extraction voltage to 45 kV has resulted in frequent high voltage breakdowns in the extraction region caused by evaporating material from the electron dump, triggering a new design of the extraction and electron dumping system. Results of the ion source commissioning at 35 kV are presented as well as simulations of a new pulsed extraction system for beam extraction at 45 kV.
Review of Scientific Instruments | 2014
R. Scrivens; G.Bellodi; O. Crettiez; Veliko Dimov; D. Gerard; E. Granemann Souza; R. Guida; J. Hansen; Jean-Baptiste Lallement; J. Lettry; Alessandra Lombardi; Ø. Midttun; C. Pasquino; U.Raich; B. Riffaud; F.Roncarolo; C. A. Valerio-Lizarraga; J. Wallner; M.Yarmohammadi Satri; T. Zickler
Linac4, a 160 MeV normal-conducting H(-) linear accelerator, is the first step in the upgrade of the beam intensity available from the LHC proton injectors at CERN. The Linac4 Low Energy Beam Transport (LEBT) line from the pulsed 2 MHz RF driven ion source, to the 352 MHz RFQ (Radiofrequency Quadrupole) has been built and installed at a test stand, and has been used to transport and match to the RFQ a pulsed 14 mA H(-) beam at 45 keV. A temporary slit-and-grid emittance measurement system has been put in place to characterize the beam delivered to the RFQ. In this paper a description of the LEBT and its beam diagnostics is given, and the results of beam emittance measurements and beam transmission measurements through the RFQ are compared with the expectation from simulations.
SECOND INTERNATIONAL SYMPOSIUM ON NEGATIVE IONS, BEAMS AND SOURCES | 2011
J. Lettry; S. Bertolo; A. Castel; E. Chaudet; J.‐F. Ecarnot; G. Favre; F. Fayet; J.‐M. Geisser; M. Haase; A. Habert; J. Hansen; S. Joffe; M. Kronberger; D. Lombard; A. Marmillon; J. Marques Balula; S. Mathot; Ø. Midttun; P. Moyret; D. Nisbet; M. O’Neil; M. Paoluzzi; L. Prever‐Loiri; J. Sanchez Arias; C. Schmitzer; R. Scrivens D. Steyaert; H. Vestergard; M. Wilhelmsson
At CERN, a non caesiated H− ion volume source derived from the DESY ion source is being commissioned. For a proposed High Power Superconducting Proton Linac (HP‐SPL), a non caesiated plasma generator was designed to operate at the two orders of magnitude larger duty factor required by the SPL. The commissioning of the plasma generator test stand and the plasma generator prototype are completed and briefly described. The 2 MHz RF generators (100 kW, 50 Hz repetition rate) was successfully commissioned; its frequency and power will be controlled by arbitrary function generators during the 1 ms plasma pulse. In order to characterize the plasma, RF‐coupling, optical spectrometer, rest gas analyzer and Langmuir probe measurements will be used. Optical spectrometry allows direct comparison with the currently commissioned Linac4 H− ion source plasma. The first measurements of the optical emission of the Linac4 ion source and of the SPL plasma generator plasmas are presented.