O. Minaeva
Moscow State Pedagogical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by O. Minaeva.
IEEE Transactions on Applied Superconductivity | 2007
Gregory N. Goltsman; O. Minaeva; A. Korneev; M. Tarkhov; I. Rubtsova; A. Divochiy; I. Milostnaya; G. Chulkova; N. Kaurova; B. Voronov; D. Pan; J. Kitaygorsky; A. Cross; A. Pearlman; I. Komissarov; W. Slysz; M. Wegrzecki; P. Grabiec; Roman Sobolewski
We present an overview of the state-of-the-art of NbN superconducting single-photon detectors (SSPDs). Our devices exhibit quantum efficiency (QE) of up to 30% in near-infrared wavelength and 0.4% at 5 mum, with a dark-count rate that can be as low as 10-4 s-1. The SSPD structures integrated with lambda/4 microcavities achieve a QE of 60% at telecommunication, 1550-nm wavelength. We have also developed a new generation of SSPDs that possess the QE of large-active-area devices, but, simultaneously, are characterized by low kinetic inductance that allows achieving short response times and the GHz-counting rate with picosecond timing jitter. The improvements presented in the SSPD development, such as fiber-coupled SSPDs, make our detectors most attractive for high-speed quantum communications and quantum computing.
IEEE Transactions on Applied Superconductivity | 2005
A. Korneev; V. Matvienko; O. Minaeva; I. Milostnaya; I. Rubtsova; G. Chulkova; K. Smirnov; V. Voronov; Gregory N. Goltsman; W. Slysz; A. Pearlman; A. Verevkin; Roman Sobolewski
We present our studies on the quantum efficiency (QE) and the noise equivalent power (NEP) of the latest-generation, nanostructured, superconducting, single-photon detectors (SSPDs) in the wavelength range from 0.5 to 5.6 /spl mu/m, operated at temperatures in the 2.0- to 4.2-K range. Our detectors are designed as 4-nm-thick and 100-nm-wide NbN meander-shaped stripes, patterned by electron-beam lithography and cover a 10/spl times/10-/spl mu/m/sup 2/ active area. The best-achieved QE at 2.0 K for 1.55-/spl mu/m photons is 17%, and QE for 1.3-/spl mu/m infrared photons reaches its saturation value of /spl sim/30%. The SSPD NEP at 2.0 K is as low as 5/spl times/10/sup -21/ W/Hz/sup -1/2/. Our nanostructured SSPDs, operated at 2.0 K, significantly outperform their semiconducting counterparts, and, together with their GHz counting rate and picosecond timing jitter, they are devices-of-choice for practical quantum key distribution systems and free-space (even interplanetary) quantum optical communications.
Applied Physics Letters | 2006
W. Slysz; M. Wegrzecki; J. Bar; P. Grabiec; M. Górska; V. Zwiller; C. Latta; P. Bohi; I. Milostnaya; O. Minaeva; A. Antipov; O. Okunev; A. Korneev; K. Smirnov; B. Voronov; N. Kaurova; G. N. Gol’tsman; A. Pearlman; A. Cross; I. Komissarov; A. Verevkin; Roman Sobolewski
We have fabricated and tested a two-channel single-photon detector system based on two fiber-coupled superconducting single-photon detectors (SSPDs). Our best device reached the system quantum efficiency of 0.3% in the 1540-nm telecommunication wavelength with a fiber-to-detector coupling factor of about 30%. The photoresponse consisted of 2.5-ns-wide voltage pulses with a rise time of 250ps and timing jitter below 40ps. The overall system response time, measured as a second-order, photon cross-correlation function, was below 400ps. Our SSPDs operate at 4.2K inside a liquid-helium Dewar, but their optical fiber inputs and electrical outputs are at room temperature. Our two-channel detector system should find applications in practical quantum cryptography and in antibunching-type quantum correlation measurements.
Applied Physics Letters | 2008
M. Tarkhov; Julien Claudon; J.-Ph. Poizat; Alexander Korneev; A. Divochiy; O. Minaeva; Vitaliy Seleznev; N. Kaurova; B. Voronov; Alexander Semenov; G. N. Gol’tsman
We have measured the ultrafast reset time of NbN superconducting single photon detectors (SSPDs) based on a design consisting of N parallel superconducting stripes. Compared to a standard SSPD of identical active area, the parallel SSPD displays a similar detection efficiency and a kinetic inductance, which is divided by N2. For N=12, the duration of the voltage detection pulse is reduced by nearly two orders of magnitude down to 200ps. The timing jitter associated with the rising front is only 16ps. These results open a way to efficient detectors with ultrahigh counting rate exceeding 1 GHz.
IEEE Transactions on Applied Superconductivity | 2007
J. Kitaygorsky; I. Komissarov; A. Jukna; D. Pan; O. Minaeva; N. Kaurova; A. Divochiy; A. Korneev; M. Tarkhov; B. Voronov; I. Milostnaya; Gregory N. Goltsman; Roman Sobolewski
We present our studies on dark counts, observed as transient voltage pulses, in current-biased NbN superconducting single-photon detectors (SSPDs), as well as in ultrathin (~4 nm), submicrometer-width (100 to 500 nm) NbN nanobridges. The duration of these spontaneous voltage pulses varied from 250 ps to 5 ns, depending on the device geometry, with the longest pulses observed in the large kinetic-inductance SSPD structures. Dark counts were measured while the devices were completely isolated (shielded by a metallic enclosure) from the outside world, in a temperature range between 1.5 and 6 K. Evidence shows that in our two-dimensional structures the dark counts are due to the depairing of vortex-antivortex pairs caused by the applied bias current. Our results shed some light on the vortex dynamics in 2D superconductors and, from the applied point of view, on intrinsic performance of nanostructured SSPDs.
IEEE Journal of Selected Topics in Quantum Electronics | 2007
Alexander Korneev; Yury Vachtomin; O. Minaeva; A. Divochiy; K. Smirnov; O. Okunev; Gregory N. Goltsman; C Zinoni; Nicolas Chauvin; Laurent Balet; Francesco Marsili; David Bitauld; Blandine Alloing; Lianhe Li; Andrea Fiore; L. Lunghi; Annamaria Gerardino; M. Halder; Corentin Jorel; Hugo Zbinden
We describe the design and characterization of a fiber-coupled double-channel single-photon detection system based on superconducting single-photon detectors (SSPD), and its application for quantum optics experiments on semiconductor nanostructures. When operated at 2-K temperature, the system shows 10% quantum efficiency at 1.3-¿m wavelength with dark count rate below 10 counts per second and timing resolution <100 ps. The short recovery time and absence of afterpulsing leads to counting frequencies as high as 40 MHz. Moreover, the low dark count rate allows operation in continuous mode (without gating). These characteristics are very attractive-as compared to InGaAs avalanche photodiodes-for quantum optics experiments at telecommunication wavelengths. We demonstrate the use of the system in time-correlated fluorescence spectroscopy of quantum wells and in the measurement of the intensity correlation function of light emitted by semiconductor quantum dots at 1300 nm.
IEEE Journal of Selected Topics in Quantum Electronics | 2007
E.M. Reiger; S. N. Dorenbos; Val Zwiller; A. Korneev; G. Chulkova; I. Milostnaya; O. Minaeva; Gregory N. Goltsman; J. Kitaygorsky; D. Pan; W. Sysz; A. Jukna; Roman Sobolewski
Superconducting single-photon detectors (SSPDs) are nanostructured devices made from ultrathin superconducting films. They are typically operated at liquid helium temperature and exhibit high detection efficiency, in combination with very low dark counts, fast response time, and extremely low timing jitter, within a broad wavelength range from ultraviolet to mid-infrared (up to 6 mum). SSPDs are very attractive for applications such as fiber-based telecommunication, where single-photon sensitivity and high photon-counting rates are required. We review the current state-of-the-art in the SSPD research and development, and compare the SSPD performance to the best semiconducting avalanche photodiodes and other superconducting photon detectors. Furthermore, we demonstrate that SSPDs can also be successfully implemented in photon-energy-resolving experiments. Our approach is based on the fact that the size of the hotspot, a nonsuperconducting region generated upon photon absorption, is linearly dependent on the photon energy. We introduce a statistical method, where, by measuring the SSPD system detection efficiency at different bias currents, we are able to resolve the wavelength of the incident photons with a resolution of 50 nm.
Journal of Modern Optics | 2009
Gregory N. Goltsman; A. Korneev; A. Divochiy; O. Minaeva; M. Tarkhov; N. Kaurova; Vitaliy Seleznev; B. Voronov; O. Okunev; A. Antipov; K. Smirnov; Yu. Vachtomin; I. Milostnaya; G. Chulkova
The state-of-the-art of the NbN nanowire superconducting single-photon detector technology (SSPD) is presented. The SSPDs exhibit excellent performance at 2 K temperature: 30% quantum efficiency from visible to infrared, negligible dark count rate, single-photon sensitivity up to 5.6 µm. The recent achievements in the development of GHz counting rate devices with photon-number resolving capability is presented.
Journal of Modern Optics | 2009
Francesco Marsili; Djm David Bitauld; Andrea Fiore; A. Gaggero; R. Leoni; F. Mattioli; A. Divochiy; A. Korneev; Vitaliy Seleznev; N. Kaurova; O. Minaeva; Gregory N. Goltsman
We present a new photon number resolving detector (PNR), the Parallel Nanowire Detector (PND), which uses spatial multiplexing on a subwavelength scale to provide a single electrical output proportional to the photon number. The basic structure of the PND is the parallel connection of several NbN superconducting nanowires (≈100 nm wide, few nm thick), folded in a meander pattern. Electrical and optical equivalents of the device were developed in order to gain insight on its working principle. PNDs were fabricated on 3–4 nm thick NbN films grown on sapphire (substrate temperature T S = 900°C) or MgO (T S = 400°C) substrates by reactive magnetron sputtering in an Ar/N2 gas mixture. The device performance was characterized in terms of speed and sensitivity. The photoresponse shows a full width at half maximum (FWHM) as low as 660 ps. PNDs showed counting performance at 80 MHz repetition rate. Building the histograms of the photoresponse peak, no multiplication noise buildup is observable and a one-photon quantum efficiency can be estimated to be η ∼ 3% (at 700 nm wavelength and 4.2 K temperature). The PND significantly outperforms existing PNR detectors in terms of simplicity, sensitivity, speed, and multiplication noise. †Present address: COBRA Research Institute, Eindhoven University of Technology, Eindhoven, The Netherlands.
Journal of Physics: Conference Series | 2006
I. Milostnaya; A. Korneev; I. Rubtsova; Vadim Seleznev; O. Minaeva; G. Chulkova; O. Okunev; B. Voronov; K. Smirnov; Gregory N. Goltsman; W. Slysz; M. Wegrzecki; M. Guziewicz; J. Bar; M. Górska; A. Pearlman; J. Kitaygorsky; A. Cross; Roman Sobolewski
We report on our progress in development of superconducting single-photon detectors (SSPDs), specifically designed for secure high-speed quantum communications. The SSPDs consist of NbN-based meander nanostructures and operate at liquid helium temperatures. In general, our devices are capable of GHz-rate photon counting in a spectral range from visible light to mid-infrared. The device jitter is 18 ps and dark counts can reach negligibly small levels. The quantum efficiency (QE) of our best SSPDs for visible-light photons approaches a saturation level of ~30-40%, which is limited by the NbN film absorption. For the infrared range (1.55µm), QE is ~6% at 4.2 K, but it can be significantly improved by reduction of the operation temperature to the 2-K level, when QE reaches ~20% for 1.55-µm photons. In order to further enhance the SSPD efficiency at the wavelength of 1.55 µm, we have integrated our detectors with optical cavities, aiming to increase the effective interaction of the photon with the superconducting meander and, therefore, increase the QE. A successful effort was made to fabricate an advanced SSPD structure with an optical microcavity optimized for absorption of 1.55 µm photons. The design consisted of a quarter-wave dielectric layer, combined with a metallic mirror. Early tests performed on relatively low-QE devices integrated with microcavities, showed that the QE value at the resonator maximum (1.55-µm wavelength) was of the factor 3-to-4 higher than that for a nonresonant SSPD. Independently, we have successfully coupled our SSPDs to single-mode optical fibers. The completed receivers, inserted into a liquid-helium transport dewar, reached ~1% system QE for 1.55 µm photons. The SSPD receivers that are fiber-coupled and, simultaneously, integrated with resonators are expected to be the ultimate photon counters for optical quantum communications.