O. N. Okunev
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by O. N. Okunev.
Applied Biochemistry and Biotechnology | 2006
Alex Berlin; Neil R. Gilkes; Douglas G. Kilburn; V.M. Maximenko; Renata Bura; A. V. Markov; A. A. Skomarovsky; Alexander V. Gusakov; A. P. Sinitsyn; O. N. Okunev; Irina Solovieva; John N. Saddler
Seven cellulase preparations from Penicillium and Trichoderma spp. were evaluated for their ability to hydrolyze the cellulose fraction of hardwoods (yellow poplar and red maple) pretreated by organosolv extraction, as well as model cellulosic substrates such as filter paper. There was no significant correlation among hydrolytic performance on pretreated hardwood, based on glucose release, and filter paper activity. However, performance on pretreated hardwood showed significant correlations to the levels of endogenous β-glucosidase and xylanase activities in the cellulase preparation. Accordingly, differences in performance were reduced or eliminated following supplementation with a crude β-glucosidase preparation containing both activities. These results complement a previous investigation using softwoods pretreated by either organosolv extraction or steam explosion. Cellulase preparations that performed best on hardwood also showed superior performance on the softwood substrates.
Biochemistry | 2004
Fedor E. Bukhtojarov; Boris B. Ustinov; Tatyana N. Salanovich; Alexey I. Antonov; Alexander V. Gusakov; O. N. Okunev; A. P. Sinitsyn
Using different chromatographic techniques, eight cellulolytic enzymes were isolated from the culture broth of a mutant strain of Chrysosporium lucknowense: six endoglucanases (EG: 25 kD, pI 4.0; 28 kD, pI 5.7; 44 kD, pI 6.0; 47 kD, pI 5.7; 51 kD, pI 4.8; 60 kD, pI 3.7) and two cellobiohydrolases (CBH I, 65 kD, pI 4.5; CBH II, 42 kD, pI 4.2). Some of the isolated cellulases were classified into known families of glycoside hydrolases: Cel6A (CBH II), Cel7A (CBH I), Cel12A (EG28), Cel45A (EG25). It was shown that EG44 and EG51 are two different forms of one enzyme. EG44 seems to be a catalytic module of an intact EG51 without a cellulose-binding module. All the enzymes had pH optimum of activity in the acidic range (at pH4.5-6.0), whereas EG25 and EG47 retained 55-60% of the maximum activity at pH 8.5. Substrate specificity of the purified cellulases against carboxymethylcellulose (CMC), β-glucan, Avicel, xylan, xyloglucan, laminarin, and p-nitrophenyl-β-D-cellobioside was studied. EG44 and EG51 were characterized by the highest CMCase activity (59 and 52 U/mg protein). EG28 had the lowest CMCase activity (11 U/mg) amongst the endoglucanases; however, this enzyme displayed the highest activity against β-glucan (125 U/mg). Only EG51 and CBH I were characterized by high adsorption ability on Avicel cellulose (98-99%). Kinetics of Avicel hydrolysis by the isolated cellulases in the presence of purified β-glucosidase from Aspergillus japonicus was studied. The hydrolytic efficiency of cellulases (estimated as glucose yield after a 7-day reaction) decreased in the following order: CBH I, EG60, CBH II, EG51, EG47, EG25, EG28, EG44.
Biochemistry | 2009
O. G. Korotkova; M. V. Semenova; V. V. Morozova; I. N. Zorov; L. M. Sokolova; T. M. Bubnova; O. N. Okunev; A. P. Sinitsyn
Using chromatography on different matrixes, three β-glucosidases (120, 116, and 70 kDa) were isolated from enzymatic complexes of the mycelial fungi Aspergillus japonicus, Penicillium verruculosum, and Trichoderma reesei, respectively. The enzymes were identified by MALDI-TOF mass-spectrometry. Substrate specificity, kinetic parameters for hydrolysis of specific substrates, ability to catalyze the transglucosidation reaction, dependence of the enzymatic activity on pH and temperature, stability of the enzymes at different temperatures, adsorption ability on insoluble cellulose, and the influence of glucose on catalytic properties of the enzymes were investigated. According to the substrate specificity, the enzymes were shown to belong to two groups: i) β-glucosidase of A. japonicus exhibiting high specific activity to the low molecular weight substrates cellobiose and pNPG (the specific activity towards cellobiose was higher than towards pNPG) and low activity towards polysaccharide substrates (β-glucan from barley and laminarin); ii) β-glucosidases from P. verruculosum and T. reesei exhibiting relatively high activity to polysaccharide substrates and lower activity to low molecular weight substrates (activity to cellobiose was lower than to pNPG).
Biochemistry | 2003
M. V. Semenova; Sergei G. Grishutin; Alexander V. Gusakov; O. N. Okunev; A. P. Sinitsyn
Using anion-exchange chromatography on different carriers and phenyl-Sepharose hydrophobic chromatography, five pectolytic enzymes were isolated from the culture liquid of a mutant strain of Aspergillus japonicus: two endo-polygalacturonases (I and II, 38 and 65 kD, pI5.6 and 3.3), pectin lyase (50 kD, pI3.8), and two pectinesterases (I and II) with similar molecular weights (46 and 47 kD) and the same pI(3.8). The pectinesterases apparently represent two isoforms of the same enzyme. All purified enzymes were homogenous according to SDS-PAGE and polyacrylamide gel-IEF, except for endo-polygalacturonase II that gave two bands on isoelectric focusing, but one band on electrophoresis. All enzymes had maximal activity in an acid medium (at pH 4.0-5.5). The pectin lyase and pectinesterase were stable at 40-50°C. The thermal stability of both endo-polygalacturonases was much lower (after 3 h of incubation at 30°C, endo-polygalacturonases I and II lost 40 and 10% of the activity, respectively). The activity of endo-polygalacturonases I and II towards polygalacturonic acid strongly depended on NaCl concentration (optimal concentration of the salt was 0.1-0.2 M); the enzymes were also capable of reducing the viscosity of pectin solution, but rather slowly. The pectin lyase had no activity towards polygalacturonic acid. The activity of the pectin lyase increased with increasing degree of methylation of pectins. Both endo-polygalacturonases demonstrated synergism with the pectinesterase during the hydrolysis of highly methylated pectin. On the contrary, in the mixture of pectin lyase and pectinesterase an antagonism between the two enzymes was observed.
Biochemistry | 2003
O. A. Sinitsyna; F. E. Bukhtoyarov; Alexander V. Gusakov; O. N. Okunev; A. O. Bekkarevitch; Yu. P. Vinetsky; A. P. Sinitsyn
The composition of the enzyme complex secreted by Penicillium canescens was investigated. A scheme for purification of the main components of the complex by chromatofocusing on a Mono P column was developed. It was found that along with β-galactosidase, the major components of the complex were endo-β-1,4-xylanase (31 kD, pI 8.2-9.3), α-L-arabinofuranosidase (60 kD, pI 7.6), arabinoxylan-arabinofuranohydrolase (70 kD, pI 3.8-4.0), and endo-β-1,3/1,4-glucanase (40 kD, pI 4.4). The substrate specificity, pH and temperature activity optima, adsorbability, thermal stability, and ability for synergic interaction of the isolated enzymes were studied.
Biochemistry | 2005
A. V. Markov; Alexander V. Gusakov; E. G. Kondratyeva; O. N. Okunev; A. O. Bekkarevich; A. P. Sinitsyn
A method for analysis of the component composition of multienzyme complexes secreted by the filamentous fungus Trichoderma reesei was developed. The method is based on chromatofocusing followed by further identification of protein fractions according to their substrate specificity and molecular characteristics of the proteins. The method allows identifying practically all known cellulases and hemicellulases of T. reesei: endoglucanase I (EG I), EG II, EG III, cellobiohydrolase I (CBH I), CBH II, xylanase I (XYL I), XYL II, β-xylosidase, α-L-arabinofuranosidase, acetyl xylan esterase, mannanase, α-galactosidase, xyloglucanase, polygalacturonase, and exo-β-1,3-glucosidase. The component composition of several laboratory and commercial T. reesei preparations was studied and the content of the individual enzymes in these preparations was quantified. The influence of fermentation conditions on the component composition of secreted enzyme complexes was revealed. The characteristic features of enzyme preparations obtained in “cellulase” and “xylanase” fermentation conditions are shown.
Microbiology | 2005
I. V. Solov’eva; O. N. Okunev; V. V. Vel’kov; A. V. Koshelev; T. V. Bubnova; E. G. Kondrat’eva; A. A. Skomarovskii; A. P. Sinitsyn
The paper describes three Penicillium verruculosum 28K mutants with about threefold enhanced production of five industrially important carbohydrases. The two-stage fermentation process that we developed provided a further two- to threefold increase in the production of carbohydrases. Physiological and biochemical studies showed that the synthesis of all five carbohydrases is inducible. Carboxymethylcellulase, xylanase, and β-glucanase are synthesized under a common regulatory control, as is evident from the concurrent increase in the synthesis of these enzymes in the presence of microcrystalline cellulose. The synthesis of avicelase and β-glucosidase is evidently induced by other cellulose- and hemicellulose-containing compounds present in the fermentation medium and, hence, is regulated independently of the three aforementioned enzymes.
Applied Biochemistry and Biotechnology | 2000
Alexander V. Gusakov; Alejandro G. Berlin; N. N. Popova; O. N. Okunev; O. A. Sinitsyna; A. P. Sinitsyn
Twenty-nine cellulase preparations from different sources were compared interms of their abrasive activities (the ability to remove Indigo from denim) and their ability tosaccharify cellulose. Nodirectrelationship could be found between these two abilities. The preparations were divided into three groups: (1) with a high yield of reducing sugars after 24 h hydrolysis of Avicel cellulose but low abrasive activity; (2) universal cellulases that could both effectively hydrolyze cellulose and remove Indigo from denim; and (3) cellulase samples with high abrasive activity but low saccharification ability.Cellobiohydrolase (CBH) and xylanase were purified from different fungi by chromatofocusing on a Mono P column and subjected to limited proteolysis with papain yielding cellulose-binding and core (catalytic) domains. The adsorption ability and backstaining index of both CBH and xylanase core proteins were notably lower than the respective parameters for the in itial nondigested enzymes indicating that protein adsorption on the surface of cotton fibers is a crucial factor causing Indigo backstaining during the enzymatic denim washing procedure.
Biochemistry | 2007
O. A. Sinitsyna; E. A. Fedorova; M. V. Semenova; Alexander V. Gusakov; L. M. Sokolova; T. M. Bubnova; O. N. Okunev; A. M. Chulkin; E. A. Vavilova; Yu. P. Vinetsky; A. P. Sinitsyn
Pectin lyase A (molecular weight 38 kD by SDS-PAGE, pI 6.7) was purified to homogeneity from culture broth of the myoelial fungus Penicillium canescens using chromatographic techniques. During genomic library screening, the gene encoding pectin lyase A from P. canescens (pelA) was isolated and sequenced, and the amino acid sequence was generated by applying the multiple alignment procedure (360 residues). A theoretical model for the three dimensional structure of the protein molecule was also proposed. Different properties of pectin lyase A were investigated: substrate specificity, pH-and temperature optimum of activity, stability under different pH and temperature conditions, and the effect of Ca2+ on enzyme activity. In the course of the laboratory trials, it was demonstrated that pectin lyase A from P. canescens could be successfully applied to production and clarification of juice.
Applied Biochemistry and Microbiology | 2006
M. V. Semenova; O. A. Sinitsyna; V. V. Morozova; E. A. Fedorova; Alexander V. Gusakov; O. N. Okunev; L. M. Sokolova; A. V. Koshelev; T. V. Bubnova; Yu. P. Vinetskii; A. P. Sinitsyn
A new enzyme preparation of fungal pectin lyase (EC 4.2.2.10) was shown to be useful for the production of cranberry juice and clarification of apple juice in the food industry. A comparative study showed that the preparation of pectin lyase is competitive with commercial pectinase products. The molecular weight of homogeneous pectin lyase was 38 kDa. Properties of the homogeneous enzyme were studied. This enzyme was most efficient in removing highly esterified pectin.