O. O. Prishchepa
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by O. O. Prishchepa.
Jetp Letters | 2007
V. Ya. Zyryanov; O. O. Prishchepa; A. V. Shabanov
The films of a polymer-dispersed nematic liquid crystal doped with an ionic surfactant were studied. The surface-anchoring modification effect caused by the local increase in the concentration of surface-active ions was observed at the polymer-liquid crystal interface under the action of an electric field. The modification of the boundary conditions leads to the transformation of the orientational structure of the nematic droplets and, as a result, to an appreciable change in their texture patterns and light-scattering efficiency at the interfaces. The monopolar director configurations (normal and curved) arising in the process of orientational structure transformations are considered and their typical textures are demonstrated. The possibility that the monopolar structure can be formed is theoretically substantiated by the computer simulation of the director field in a nematic droplet with the boundary conditions corresponding to the experiment.
Jetp Letters | 2009
V. Ya. Zyryanov; O. O. Prishchepa; A. V. Shabanov
It was found that the effect of the ionic modification of anchoring in liquid-crystal droplets can be implemented in the inverse regime. Droplets of 4-n-pentyl-4′-cyanobiphenyl nematic doped with ionic cetyltrimethylammonium bromide surfactant were dispersed in polyvinyl alcohol and investigated. In the initial state, nematic droplets have a radial structure with homogeneous homeotropic anchoring typical of the surfactant used. In the presence of a dc electric field, the boundary conditions become tangential in the surface area left by the cations. That results in the transformation of an orientational structure following by various scenarios. For the new states of nematic droplets, the distribution of the director field was analyzed and the corresponding textural patterns were numerically calculated.
Jetp Letters | 2007
O. O. Prishchepa; A. V. Shabanov; V. Ya. Zyryanov; A. M. Parshin; V. G. Nazarov
A numerical method has been developed for calculating the director configuration in ellipsoidal droplets of a nematic liquid crystal with strong tangential anchoring in a uniform magnetic field of an arbitrary orientation. A relation has been obtained for determining the Friedericksz threshold corresponding to the beginning of the reorientation of the central region of a droplet when the field is orthogonal to the biopolar axis. The effect of the breaking of the orthogonal condition on the threshold character of the orientation process is considered. The reorientation of the ensemble of bipolar droplets of the 5CB nematic liquid crystal dispersed in polyvinyl butyral has been studied by the magneto-optical method. Comparative analysis of calculation data and measured values of the threshold field has been performed.
Optical Materials Express | 2014
V. S. Sutormin; O. O. Prishchepa; Wei Lee; Victor Ya. Zyryanov
This study is concerned with the optical response of an electro-optical material consisting of nematic liquid crystal as well as ionic surfactant as a dopant. The dopant is a key component to carry out the working of the resulting device through configuration switching. The operational principle is based on the surface anchoring transition induced by a steady electric field. The dynamic characteristics of the electro-optical cell can be considerably improved when the nematic layer is reoriented from the initially homeoplanar director configuration into the twisted state. Besides, a method to shorten the relaxation time is demonstrated by using a controlling pulse with a bipolar waveform.
Jetp Letters | 2012
V. S. Sutormin; O. O. Prishchepa; V. Ya. Zyryanov
A local Frédericksz transition caused by electrically controlled surface anchoring in a nematic liquid crystal has been implemented owing to the displacement of surface-active ions. In the initial case, the nematic is homeotropically aligned by monomolecular layers of cetyltrimethylammonium bromide cations adsorbed on the surface of substrates. One of the substrates in a static electric field becomes free of a cation layer and specifies planar boundary conditions; as a result, a homeoplanar orientation structure is formed. The features of the dynamics of the optical response of the cell under study that are characteristic of the effect under consideration are discussed.
Liquid Crystals | 2017
V. S. Sutormin; I. V. Timofeev; O. O. Prishchepa; Victor Yakovlevich Zyryanov
ABSTRACT A reorientation of cholesteric liquid crystal with a large helix pitch induced by the electrically controlled ionic modification of the surface anchoring has been studied. In initial state, the cholesteric helix is untwisted completely owing to the normal surface anchoring specified by the cations adsorbed at the substrates. As a result, the homeotropic director configuration is observed within the cell. Under the action of DC electric field, one of the substrates becomes free from the layer of surface active cations, therefore, setting the planar surface anchoring. The latter, in turn, leads to the formation of the hybrid chiral structure. The threshold value and dynamic parameters have been estimated for this process as well as the range of control voltages, which do not allow the electrohydrodynamic instabilities. The twisted hybrid director configuration observed in the experiment has been analysed by means of the simulation of polarisation change of light propagating through the cholesteric layer with asymmetric (planar and homeotropic) surface anchoring on the cell substrates. GRAPHICAL ABSTRACT
Liquid Crystals | 2017
V. S. Sutormin; O. O. Prishchepa; Victor Yakovlevich Zyryanov
ABSTRACT The orientational transitions induced by electrically controlled ionic modification of surface anchoring in liquid crystal cells based on the nematics with small or zero dielectric anisotropy Δε are considered. The type of director reorientation is shown to be independent of the sign of dielectric anisotropy and can be the same for the nematics with both negative and positive Δε. Besides, the orientational transition and corresponding switchable optical states do not depend on the Δε value and can be effectively realised even for the nematics with zero dielectric anisotropy. Graphical Abstract
Jetp Letters | 2017
V. Yu. Rudyak; O. O. Prishchepa; V. S. Sutormin; A. V. Emelyanenko; V. Ya. Zyryanov
Oblate nematic droplets encapsulated in a polymer specifying conical boundary conditions have been considered. Calculations by the extended Frank elastic continuum approach show that a number of various structures can be formed in such droplets under the variation of their size. Polarizing optical microscopy studies of composite film samples confirm the results of calculation and demonstrate the formation of the following orientational structures in the considered system: (i) a radial-bipolar structure with a twisted hedgehog defect and two hyperbolic boojums, (ii) an axial-bipolar structure with a circular disclination and two radial boojums, and (iii) a structure with a hedgehog defect, a hyperbolic boojum, and a radial boojum. Such a diversity of possible topologies of droplets is due to a complex balance between the energies of elasticity of the director field, disclinations, and anchoring with the surface, which is ensured by conical boundary conditions.
Liquid Crystals | 2016
O. O. Prishchepa; V. S. Sutormin; Victor Yakovlevich Zyryanov
ABSTRACT The polymer dispersed nematic liquid crystal (LC) with the tilted surface anchoring has been studied. The droplet orientational structures with two point surface defects – boojums and the surface ring defect – are formed within the films. The director tilt angle α = 40° ± 4° at the droplet interface and LC surface anchoring strength Ws ~ 10–6 (J m−2) have been estimated. The bipolar axes within the studied droplets of oblate ellipsoidal form can be randomly oriented are oriented randomly relatively to the ellipsoid axes as opposed to the droplets with homeotropic and tangential anchoring. Graphical Abstract
Journal of Optical Technology | 2014
M. H. Egamov; V. P. Gerasimov; O. O. Prishchepa; V. Ya. Zyryanov; V. A. Loiko
The transmittance anisotropy of a composite polymer–liquid-crystal film has been studied as it varies with the degree to which it is elongated. The composite film includes polyvinyl alcohol, the nematic liquid crystal 4-n-pentyl-4′-cyanobiphenyl, and the surfeiting cetyltrimethylammonium bromide, which initiates homeotropic adhesion of the nematic to the surface of the polymer. It is shown that, when the film is uniaxially stretched, the transmittance of the orthogonally polarized component of directly transmitted radiation and accordingly the degree of polarization abruptly increase, reaching saturation when it is stretched to twice its length. Such variation of the film’s macroscopic optical properties can be caused by an orientational–structural transition to a homogeneous configuration of the director in deformed droplets of the nematic and makes it possible to substantially improve the optical characteristics of light polarizers based on such composite media.