Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where O Pivovarova is active.

Publication


Featured researches published by O Pivovarova.


Diabetes | 2015

WISP1 Is a Novel Adipokine Linked to Inflammation in Obesity

V Murahovschi; O Pivovarova; Iryna Ilkavets; Renata M. Dmitrieva; Stephanie Döcke; Farnaz Keyhani-Nejad; Özlem Gögebakan; M Osterhoff; Margrit Kemper; S Hornemann; Mariya Markova; Nora Klöting; Martin Stockmann; Martin O. Weickert; Valéria Lamounier-Zepter; Peter Neuhaus; Alexandra Konradi; Steven Dooley; Christian von Loeffelholz; Matthias Blüher; Andreas F.H. Pfeiffer; Natalia Rudovich

WISP1 (Wnt1-inducible signaling pathway protein-1, also known as CCN4) is a member of the secreted extracellular matrix–associated proteins of the CCN family and a target gene of the Wingless-type (WNT) signaling pathway. Growing evidence links the WNT signaling pathway to the regulation of adipogenesis and low-grade inflammation in obesity. We aimed to validate WISP1 as a novel adipokine. Human adipocyte differentiation was associated with increased WISP1 expression and secretion. Stimulation of human macrophages with WISP1 led to a proinflammatory response. Circulating WISP1 and WISP1 subcutaneous adipose tissue expression were regulated by weight changes in humans and mice. WISP1 expression in visceral and subcutaneous fat tissue was associated with markers of insulin resistance and inflammation in glucose-tolerant subjects. In patients with nonalcoholic fatty liver disease, we found no correlation among disease activity score, liver fat content, and WISP1 expression. Insulin regulated WISP1 expression in adipocytes in vitro but had no acute effect on WISP1 gene expression in subcutaneous fat tissue in overweight subjects who had undergone hyperinsulinemic clamp experiments. The data suggest that WISP1 may play a role in linking obesity to inflammation and insulin resistance and could be a novel therapeutic target for obesity.


Diabetes Care | 2013

Hepatic insulin clearance is closely related to metabolic syndrome components.

O Pivovarova; Wolfgang Bernigau; Thomas Bobbert; Frank Isken; Matthias Möhlig; Joachim Spranger; Martin O. Weickert; M Osterhoff; Andreas F.H. Pfeiffer; Natalia Rudovich

OBJECTIVE Insulin clearance is decreased in type 2 diabetes mellitus (T2DM) for unknown reasons. Subjects with metabolic syndrome are hyperinsulinemic and have an increased risk of T2DM. We aimed to investigate the relationship between hepatic insulin clearance (HIC) and different components of metabolic syndrome and tested the hypothesis that HIC may predict the risk of metabolic syndrome. RESEARCH DESIGN AND METHODS Individuals without diabetes from the Metabolic Syndrome Berlin Brandenburg (MeSyBePo) study (800 subjects with the baseline examination and 189 subjects from the MeSyBePo recall study) underwent an oral glucose tolerance test (OGTT) with assessment of insulin secretion (insulin secretion rate [ISR]) and insulin sensitivity. Two indices of HIC were calculated. RESULTS Both HIC indices showed lower values in subjects with metabolic syndrome (P < 0.001) at baseline. HIC indices correlate inversely with waist circumference, diastolic blood pressure, fasting glucose, triglycerides, and OGTT-derived insulin secretion index. During a mean follow-up of 5.1 ± 0.9 years, 47 individuals developed metabolic syndrome and 33 subjects progressed to impaired glucose metabolism. Both indices of HIC showed a trend of an association with increased risk of metabolic syndrome (HICC-peptide odds ratio 1.13 [95% CI 0.97–1.31], P = 0.12, and HICISR 1.38 [0.88–2.17], P = 0.16) and impaired glucose metabolism (HICC-peptide 1.12 [0.92–1.36], P = 0.26, and HICISR 1.31 [0.74–2.33] P = 0.36), although point estimates reached no statistical significance. CONCLUSIONS HIC was associated with different components of metabolic syndrome and markers of insulin secretion and insulin sensitivity. Decreased HIC may represent a novel pathophysiological mechanism of the metabolic syndrome, which may be used additionally for early identification of high-risk subjects.


Molecular Nutrition & Food Research | 2015

Dietary rapeseed/canola-oil supplementation reduces serum lipids and liver enzymes and alters postprandial inflammatory responses in adipose tissue compared to olive-oil supplementation in obese men

Michael Kruse; Christian von Loeffelholz; D Hoffmann; Antje Pohlmann; Ac Seltmann; M Osterhoff; S Hornemann; O Pivovarova; Sascha Rohn; Gerhard Jahreis; Andreas F.H. Pfeiffer

SCOPE Obesity is associated with hyperlipidemia, hepatic steatosis, and low-grade inflammation. Studies have shown that MUFA as well as PUFA have beneficial effects on blood lipids and the inflammatory state. METHODS AND RESULTS This study investigates the effects of a daily supplementation of either 50 g of rapeseed/canola (RA) or olive (OL) oil over 4 wk on serum lipids, serum liver enzymes, and inflammatory gene expression in subcutaneous (s. c.) adipose tissue in obese men. Consuming RA resulted in increased serum n-3 fatty acids and a reduction in total cholesterol, LDL cholesterol, and serum aspartate aminotransferase compared to OL. In s. c. adipose tissue, gene expression of the pro-inflammatory cytokine IL6 was reduced in RA compared to OL. However, after 4 h after a test meal, containing the appropriate oil, white bread, and 400 mL of liquid diet drink (835 kcal in total), gene expression of IL6, IL1B, and EMR1 (egf-like module containing Mucin-like hormone receptor-like 1) was increased in RA and of monocyte chemoattractant protein-1 (CCL2) in both RA and OL. CONCLUSION This demonstrates that consuming RA for 4 wk improves serum lipids, liver enzymes, and basal inflammation in s. c. adipose tissue, but it mediates an acute pro-inflammatory response in adipose tissue upon consuming a meal.


The Journal of Clinical Endocrinology and Metabolism | 2015

Changes of Dietary Fat and Carbohydrate Content Alter Central and Peripheral Clock in Humans

O Pivovarova; Karsten Jürchott; Natalia Rudovich; S Hornemann; Lu Ye; Simona Möckel; V Murahovschi; K Kessler; Ac Seltmann; Christiane Maser-Gluth; Jeannine Mazuch; Michael Kruse; Andreas Busjahn; Achim Kramer; Andreas F.H. Pfeiffer

CONTEXT The circadian clock coordinates numerous metabolic processes with light-dark and feeding regimens. However, in humans it is unknown whether dietary patterns influence circadian rhythms. OBJECTIVE We examined the effects of switching from a high-carbohydrate, low-fat diet to a low-carbohydrate, high fat (LC/HFD) isocaloric diet on the central and peripheral circadian clocks in humans. DESIGN Diurnal patterns of salivary cortisol and gene expression were analyzed in blood monocytes of 29 nonobese healthy subjects before and 1 and 6 weeks after the dietary switch. For this, we established a method of rhythm prediction by 3-time point data. RESULTS The centrally driven cortisol rhythm showed a phase delay 1 and 6 weeks after the dietary switch to a LC/HFD as well as an amplitude increase. The dietary switch altered diurnal oscillations of core clock genes (PER1, PER2, PER3, and TEF) and inflammatory genes (CD14, CD180, NFKBIA, and IL1B). The LC/HFD also affected the expression of nonoscillating genes contributing to energy metabolism (SIRT1) and fat metabolism (ACOX3 and IDH3A). Expression of clock genes but not of salivary cortisol in monocytes tightly correlated with levels of blood lipids and with expression of metabolic and inflammatory genes. CONCLUSIONS Our results suggest that the modulation of the dietary fat and carbohydrate content alters the function of the central and peripheral circadian clocks in humans.


Diabetes-metabolism Research and Reviews | 2009

The influence of genetic variations in HHEX gene on insulin metabolism in the German MESYBEPO cohort

O Pivovarova; Victoria J. Nikiforova; Andreas F.H. Pfeiffer; Natalia Rudovich

Background In the present study, we aimed to validate the type 2 diabetes (T2DM) susceptibility alleles identified in the first genome‐wide association study in the hematopoietically expressed homeobox protein (HHEX) gene region (rs1111875 and rs7923837). Furthermore, we investigated quantitative metabolic risk phenotypes of these two variants for association with three key components of the insulin metabolism: insulin secretion, insulin sensitivity and insulin degradation.


International Journal of Obesity | 2016

Regulation of the clock gene expression in human adipose tissue by weight loss.

O Pivovarova; Özlem Gögebakan; Stephanie Sucher; J Groth; Murahovschi; K Kessler; M Osterhoff; Natalia Rudovich; Achim Kramer; Andreas F.H. Pfeiffer

Background:The circadian clock coordinates numerous metabolic processes to adapt physiological responses to light–dark and feeding regimens and is itself regulated by metabolic cues. The implication of the circadian clock in the regulation of energy balance and body weight is widely studied in rodents but not in humans. Here we investigated (1) whether the expression of clock genes in human adipose tissue is changed by weight loss and (2) whether these alterations are associated with metabolic parameters.Subjects/Methods:Subcutaneous adipose tissue (SAT) samples were collected before and after 8 weeks of weight loss on an 800 kcal per day hypocaloric diet (plus 200 g per day vegetables) at the same time of the day. Fifty overweight subjects who lost at least 8% weight after 8 weeks were selected for the study. The expression of 10 clock genes and key metabolic and inflammatory genes in adipose tissue was determined by quantitative real-time PCR.Results:The expression of core clock genes PER2 and NR1D1 was increased after the weight loss. Correlations of PERIOD expression with body mass index (BMI) and serum total, high-density lipoprotein and low-density lipoprotein (LDL) cholesterol levels and of NR1D1 expression with total and LDL cholesterol were found that became non-significant after correction for multiple testing. Clock gene expression levels and their weight loss-induced changes tightly correlated with each other and with genes involved in fat metabolism (FASN, CPT1A, LPL, PPARG, PGC1A, ADIPOQ), energy metabolism (SIRT1), autophagy (LC3A, LC3B) and inflammatory response (NFKB1, NFKBIA, NLRP3, EMR1).Conclusion:Clock gene expression in human SAT is regulated by body weight changes and associated with BMI, serum cholesterol levels and the expression of metabolic and inflammatory genes. Our data confirm the tight crosstalk between molecular clock and metabolic and inflammatory pathways involved in adapting adipose tissue metabolism to changes of the energy intake in humans.


Peptides | 2015

Regulation of nutrition-associated receptors in blood monocytes of normal weight and obese humans.

O Pivovarova; S Hornemann; Sandra Weimer; Ye Lu; V Murahovschi; Sergei Zhuk; Ac Seltmann; Anna Malashicheva; Anna Kostareva; Michael Kruse; Andreas Busjahn; Natalia Rudovich; Andreas F.H. Pfeiffer

Obesity, type 2 diabetes and associated metabolic diseases are characterized by low-grade systemic inflammation which involves interplay of nutrition and monocyte/macrophage functions. We suggested that some factors such as nutrient components, neuropeptides involved in the control of gastrointestinal functions, and gastrointestinal hormones might influence immune cell functions and in this way contribute to the disease pathogenesis. The aim of this study was to investigate the mRNA expression of twelve nutrition-associated receptors in peripheral blood mononuclear cells (PBMC), isolated monocytes and monocyte-derived macrophages and their regulation under the switching from the high-carbohydrate low-fat diet to the low-carbohydrate high-fat (LC/HFD) isocaloric diet in healthy humans. The mRNA expression of receptors for short chain fatty acids (GPR41, GPR43), bile acids (TGR5), incretins (GIPR, GLP1R), cholecystokinin (CCKAR), neuropeptides VIP and PACAP (VIPR1, VIPR2), and neurotensin (NTSR1) was detected in PBMC and monocytes, while GPR41, GPR43, GIPR, TGR5, and VIPR1 were found in macrophages. Correlations of the receptor expression in monocytes with a range of metabolic and inflammatory markers were found. In non-obese subjects, the dietary switch to LC/HFD induced the increase of GPR43 and VIPR1 expression in monocytes. No significant differences of receptor expression between normal weight and moderately obese subjects were found. Our study characterized for the first time the expression pattern of nutrition-associated receptors in human blood monocytes and its dietary-induced changes linking metabolic responses to nutrition with immune functions in health and metabolic diseases.


American Journal of Physiology-endocrinology and Metabolism | 2011

Metabolomic linkage reveals functional interaction between glucose-dependent insulinotropic polypeptide and ghrelin in humans

Natalia Rudovich; Victoria J. Nikiforova; Baerbel Otto; O Pivovarova; Özlem Gögebakan; Alexander Erban; Matthias Möhlig; Martin O. Weickert; Joachim Spranger; Matthias H. Tschöp; Lothar Willmitzer; Michael A. Nauck; Andreas F.H. Pfeiffer

The gastric peptide ghrelin promotes energy storage, appetite, and food intake. Nutrient intake strongly suppresses circulating ghrelin via molecular mechanisms possibly involving insulin and gastrointestinal hormones. On the basis of the growing evidence that glucose-dependent insulinotropic polypeptide (GIP) is involved in the control of fuel metabolism, we hypothesized that GIP and/or insulin, directly or via changes in plasma metabolites, might affect circulating ghrelin. Fourteen obese subjects were infused with GIP (2.0 pmol·kg(-1)·min(-1)) or placebo in the fasting state during either euglycemic hyperinsulinemic (EC) or hyperglycemic hyperinsulinemic clamps (HC). Apart from analysis of plasma ghrelin and insulin levels, GC-TOF/MS analysis was applied to create a hormone-metabolite network for each experiment. The GIP and insulin effects on circulating ghrelin were analyzed within the framework of those networks. In the HC, ghrelin levels decreased in the absence (19.2% vs. baseline, P = 0.028) as well as in the presence of GIP (33.8%, P = 0.018). Ghrelin levels were significantly lower during HC with GIP than with placebo, despite insulin levels not differing significantly. In the GIP network combining data on GIP-infusion, EC+GIP and HC+GIP experiments, ghrelin was integrated into hormone-metabolite networks through a connection to a group of long-chain fatty acids. In contrast, ghrelin was excluded from the network of experiments without GIP. GIP decreased circulating ghrelin and might have affected the ghrelin system via modification of long-chain fatty acid pools. These observations were independent of insulin and offer potential mechanistic underpinnings for the involvement of GIP in systemic control of energy metabolism.


Annals of Medicine | 2016

Insulin-degrading enzyme: new therapeutic target for diabetes and Alzheimer’s disease?

O Pivovarova; Annika Höhn; Tilman Grune; Andreas F.H. Pfeiffer; Natalia Rudovich

Abstract Insulin-degrading enzyme (IDE) is a major enzyme responsible for insulin degradation. In addition to insulin, IDE degrades many targets including glucagon, atrial natriuretic peptide, and beta-amyloid peptide, regulates proteasomal degradation and other cell functions. IDE represents a pathophysiological link between type 2 diabetes (T2DM) and late onset Alzheimer’s disease (AD). Potent and selective modulators of IDE activity are potential drugs for therapies of both diseases. Acute treatment with a novel IDE inhibitor was recently tested in a mouse study as a therapeutic approach for the treatment of T2DM. In contrast, effective IDE activators can be used for the AD treatment. However, because of the pleiotropic IDE action, the sustained treatment with systemic IDE modulators should be carefully tested in animal studies. Development of substrate-selective IDE modulators could overcome possible adverse effects of IDE modulators associated with multiplicity of IDE targets. KEY MESSAGES Insulin-degrading enzyme (IDE) represents a pathophysiological link between type 2 diabetes (T2DM) and Alzheimer’s disease (AD). Selective modulators of IDE activity are potential drugs for both T2DM and AD treatment. Development of substrate-selective IDE modulators could overcome possible adverse effects of IDE modulators associated with multiplicity of IDE targets.


Diabetes Technology & Therapeutics | 2011

Effects of Acarbose Treatment on Markers of Insulin Sensitivity and Systemic Inflammation

Natalia Rudovich; Martin O. Weickert; O Pivovarova; Wolfgang Bernigau; Andreas F.H. Pfeiffer

BACKGROUND This study assessed the effect of postprandial glucose reduction by acarbose on insulin sensitivity and biomarkers of systemic inflammation. METHODS This was a single-center, double-blind, randomized, placebo-controlled, crossover study <40 weeks in duration, involving 66 subjects with varying degrees of glucose tolerance. Eligible patients completed a 3-week run-in period and were randomized to receive either 100 mg of acarbose three times daily followed by placebo, or vice versa, lasting 12 weeks each with a 12-week washout between interventions. Liquid meal challenges and hyperinsulinemic-euglycemic glucose clamp were performed at weeks 0, 12, 24, and 36. RESULTS Fasting proinsulin levels and proinsulin-to-adiponectin ratios but not fasting adiponectin levels were significantly lower during acarbose versus placebo treatment. Clamp-derived insulin sensitivity index and body weight were unchanged by the intervention. Levels of fasting insulin, fasting glucose, monocyte chemoattractant protein-1, interleukin-6, and interleukin-1β were comparable between treatments. In the liquid meal challenge tests, postprandial glucose and insulin responses were significantly lower during acarbose versus placebo treatment. The effects of acarbose on the reduction of fasting proinsulin was most pronounced in subjects with impaired fasting glucose/impaired glucose tolerance (n = 24). CONCLUSIONS Reduction of the glycemic load by acarbose decreased fasting levels of proinsulin but had no effect on adiponectin and whole-body insulin sensitivity as well as biomarkers reflecting inflammation. The preventive effects of acarbose on type 2 diabetes mellitus and cardiovascular risk need further investigation and cannot be explained by changes of insulin resistance and inflammatory biomarkers.

Collaboration


Dive into the O Pivovarova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin O. Weickert

University Hospitals Coventry and Warwickshire NHS Trust

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M Osterhoff

Ruhr University Bochum

View shared research outputs
Researchain Logo
Decentralizing Knowledge