O. R. Pols
Radboud University Nijmegen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by O. R. Pols.
Astronomy and Astrophysics | 2009
S. E. de Mink; O. R. Pols; N. Langer; Robert G. Izzard
Abundance anomalies observed in globular cluster stars indicate pollution with material processed by hydrogen burning. Two main sources have been suggested: asymptotic giant branch (AGB) stars and massive stars rotating near the break-up limit (spin stars). We propose massive binaries as an alternative source of processed material. We compute the evolution of a 20 M star in a close binary considering the effects of non conservative mass and angular momentum transfer and of rotation and tidal interaction to demonstrate the principle. We find that this system sheds about 10 M of material, nearly the entire envelope of the primary star. The ejecta are enriched in He, N, Na, and Al and depleted in C and O, similar to the abundance patterns observed in gobular cluster stars. However, Mg is not significantly depleted in the ejecta of this model. In contrast to the fast, radiatively driven winds of massive stars, this material is typically ejected with low velocity. We expect that it remains inside the potential well of a globular cluster and becomes available for the formation or pollution of a second generation of stars. We estimate that the amount of processed low-velocity material ejected by massive binaries is greater than the contribution of AGB stars and spin stars combined, assuming that the majority of massive stars in a proto-globular cluster interact with a companion and return their envelope to the interstellar medium. If we take the possible contribution of intermediate mass stars in binaries into account and assume that the ejecta are diluted with an equal amount of unprocessed material, we find that this scenario can potentially provide enough material to form a second generation of low-mass stars, which is as numerous as the first generation of low-mass stars, without the need to make commonly adopted assumptions, such as preferential loss of the first generation of stars, external pollution of the cluster, or an anomalous initial mass function.
Monthly Notices of the Royal Astronomical Society | 2005
Jarrod R. Hurley; O. R. Pols; Sverre J. Aarseth; Christopher A. Tout
The old open cluster M67 is an ideal testbed for current cluster evolution models because of its dynamically evolved structure and rich stellar populations that show clear signs of interaction between stellar, binary and cluster evolution. Here, we present the first truly direct N-body model for M67, evolved from zero age to 4 Gyr taking full account of cluster dynamics as well as stellar and binary evolution. Our preferred model starts with 36 000 stars (12 000 single stars and 12 000 binaries) and a total mass of nearly 19 000 M � , placed in a Galactic tidal field at 8.0 kpc from the Galactic Centre. Our choices for the initial conditions and for the primordial binary population are explained in detail. At 4 Gyr, the age of M67, the total mass has reduced to 2000 Mas a result of mass loss and stellar escapes. The mass and half-mass radius of luminous stars in the cluster are a good match to observations, although the model is more centrally concentrated than observations indicate. The stellar mass and luminosity functions (LFs) are significantly flattened by preferential escape of low-mass stars. We find that M67 is dynamically old enough that information about the initial mass function (IMF) is lost, both from the current LF and from the current mass fraction in white dwarfs (WDs). The model contains 20 blue stragglers (BSs) at 4 Gyr, which is slightly less than the 28 observed in M67. Nine are in binaries. The blue stragglers were formed by a variety of means and we find formation paths for the whole variety observed in M67. Both the primordial binary population and the dynamical cluster environment play an essential role in shaping the population. A substantial population of short-period primordial binaries (with periods less than a few days) is needed to explain the observed number of BSs in M67. The evolution and properties of two-thirds of the BSs, including all found in binaries, have been altered by cluster dynamics and nearly half would not have formed at all outside the cluster environment. On the other hand, the cluster environment is also instrumental in destroying potential BSs from the primordial binary population, so that the total number is in fact slightly smaller than what would be expected from evolving the same binary stars in isolation. Ke yw ords: stellar dynamics - methods: N-body simulations - binaries: close - blue stragglers - stars: evolution - open clusters and associations: general.
Astronomy and Astrophysics | 2009
S. E. de Mink; M. Cantiello; N. Langer; O. R. Pols; I. Brott; S. Ch. Yoon
Models of rotating single stars can successfully account fo r a wide variety of observed stellar phenomena, such as the surface enhancements of N and He observed in massive main-sequence stars. However, recent observations have questioned the idea that ro tational mixing is the main process responsible for the surface enhancements, emphasizing the need for a strong and conclusive test for rotational mixing. We investigate the consequences of rotational mixing for massive main-sequence stars in short-period binaries. In the se systems the tides are thought to spin up the stars to rapid rotation, sync hronous with their orbital revolution. We use a state-of-th e-art stellar evolution code including the effect of rotational mixing, tides, and magnetic fields. We adop t a rotational mixing effi ciency that has been calibrated against observations of rotating stars und er the assumption that rotational mixing is the main process responsible for the observed surface abundances. We find that the primaries of massive close binaries ( M1≈ 20 M⊙, Porb. 3 days) are expected to show significant enhancements in nitrogen (up to 0.6 dex in the Small Magellanic Cloud) for a significant fraction of their core hydrogen-burning lifetime . We propose using such systems to test the concept of rotational mixing. As these short-period binaries often show eclipses, their p arameters can be determined with high accuracy. For the primary stars of more massive and very close systems ( M1≈ 50 M⊙, Porb. 2 days) we find that centrally produced helium is effi ciently mixed throughout the envelope. The star remains blue and compact during the main sequence evolution and stays within its Roche lobe. It is the less massive star, in which the effects of rotational mixing are less pronounced, which fills it s Roche lobe first, contrary to what standard binary evolution theory pre dicts. The primaries will appear as “Wolf-Rayet stars in dis guise”: core hydrogen-burning stars with strongly enhanced He and N at the surface. We propose that this evolution path provides an al ternative channel for the formation of tight Wolf-Rayet binaries with a main-sequence companion and might explain massive black hole binaries such as the intriguing system M33 X-7.
Astronomy and Astrophysics | 2007
Richard J. Stancliffe; Evert Glebbeek; Robert G. Izzard; O. R. Pols
One possible scenario for the formation of carbon-enhanced metal-poor stars is the accretion of carbon-rich material from a binary companion which may no longer visible. It is generally assumed that the accreted material remains on the surface of the star and does not mix with the interior until first dredge-up. However, thermohaline mixing should mix the accreted material with the original stellar material as it has a higher mean molecular weight. We investigate the effect that this has on the surface abundances by modelling a binary system of metallicity Z = 10−4 with a 2 M primary star and a 0.74 M secondary star in an initial orbit of 4000 days. The accretion of material from the wind of the primary leads to the formation of a carbon-rich secondary.We find that the accreted material mixes fairly rapidly throughout 90% of the star, with important consequences for the surface composition. Models with thermohaline mixing predict very different surface abundances after first dredge-up compared to canonical models of stellar evolution.
Astronomy and Astrophysics | 2009
Robert G. Izzard; Evert Glebbeek; Richard J. Stancliffe; O. R. Pols
The carbon-enhanced metal-poor (CEMP) stars constitute approximately one fifth of the metal-poor ([Fe/H]
Astronomy and Astrophysics | 2009
Evert Glebbeek; Evghenii Gaburov; S. E. de Mink; O. R. Pols; S. Portegies Zwart
In the cores of young dense star clusters, repeated stellar collisions involving the same object can occur. It has been suggested that this leads to the formation of an intermediate-mass black hole. To verify this scenario we compute the detailed evolution of the merger remnant of three sequences, then follow the evolution until the onset of carbon burning, and estimate the final remnant mass to determine the ultimate fate of a runaway merger sequence. We use a detailed stellar evolution code to follow the evolution of the collision product. At each collision we mix the two colliding stars, accounting for the mass loss during the collision. During the stellar evolution we apply mass-loss rates from the literature, as appropriate for the evolutionary stage of the merger remnant. We computed models for high (Z = 0.02) and low (Z = 0.001) metallicity to quantify metallicity effects. We find that the merger remnant becomes a Wolf-Rayet star before the end of core hydrogen burning. Mass loss from stellar winds dominates the mass increase due to repeated mergers for all three merger sequences that we consider. In none of our high-metallicity
Astronomy and Astrophysics | 2014
J.S.W. Claeys; O. R. Pols; Robert G. Izzard; J. Vink; F. Verbunt
It is thought that Type Ia supernovae (SNe Ia) are explosions of carbon-oxygen white dwarfs (CO WDs). Two main evolutionary channels are proposed for the WD to reach the critical density required for a thermonuclear explosion: the single degenerate (SD) scenario, in which a CO WD accretes from a non-degenerate companion, and the double degenerate (DD) scenario, in which two CO WDs merge. However, it remains difficult to reproduce the observed SN Ia rate with these two scenarios. With a binary population synthesis code we study the main evolutionary channels that lead to SNe Ia and we calculate the SN Ia rates and the associated delay-time distributions. We find that the DD channel is the dominant formation channel for the longest delay times. The SD channel with helium-rich donors is the dominant channel at the shortest delay times. Our standard model rate is a factor of five lower than the observed rate in galaxy clusters. We investigate the influence of ill-constrained aspects of single- and binary-star evolution and uncertain initial binary distributions on the rate of Type Ia SNe. These distributions, as well as uncertainties in both helium star evolution and common envelope evolution, have the greatest influence on our calculated rates. Inefficient common envelope evolution increases the relative number of SD explosions such that for αce = 0.2 they dominate the SN Ia rate. Our highest rate is a factor of three less than the galaxy-cluster SN Ia rate, but compatible with the rate determined in a field-galaxy dominated sample. If we assume unlimited accretion onto WDs, to maximize the number of SD explosions, our rate is compatible with the observed galaxy-cluster rate.
Astronomy and Astrophysics | 2013
C. Abate; O. R. Pols; Robert G. Izzard; S. Mohamed; S. E. de Mink
Carbon-enhanced metal-poor stars (CEMP) are observed as a substantial fraction of the very metal-poor stars in the Galactic halo. Most CEMP stars are also enriched in s-process elements and these are often found in binary systems. This suggests that the carbon enrichment is due to mass transfer in the past from an asymptotic giant branch (AGB) star on to a low-mass companion. Models of binary population synthesis are not able to reproduce the observed fraction of CEMP stars without invoking non-standard nucleosynthesis or a substantial change in the initial mass function. This is interpreted as evidence of missing physical ingredients in the models. Recent hydrodynamical simulations show that e cient wind mass transfer is possible in the case of the slow and dense winds typical of AGB stars through a mechanism called wind Roche-lobe overflow (WRLOF), which lies in between the canonical Bondi-Hoyle-Lyttleton (BHL) accretion and Roche-lobe overflow. WRLOF has an e ect on the accretion e ciency of mass transfer and on the angular momentum lost by the binary system. The aim of this work is to understand the overall e ect of WRLOF on the population of CEMP stars. To simulate populations of low-metallicity binaries we combined a synthetic nucleosynthesis model with a binary population synthesis code. In this code we implemented the WRLOF mechanism. We used the results of hydrodynamical simulations to model the e ect of WRLOF on the accretion e ciency and we took the e ect on the angular momentum loss into account by assuming a simple prescription. The combination of these two e ects widens the range of systems that become CEMP stars towards longer initial orbital periods and lower mass secondary stars. As a consequence the number of CEMP stars predicted by our model increases by a factor 1:2 1:8 compared to earlier results that consider the BHL prescription. Moreover, higher enrichments of carbon are produced and the final orbital period distribution is shifted towards shorter periods.
Astronomy and Astrophysics | 2007
S. E. de Mink; O. R. Pols; Ron W. Hilditch
One of the major uncertainties in close binary evolution is the efficiency of mass transfer beta: the fraction of transferred mass that is accreted by a secondary star. We attempt to constrain the mass-transfer efficiency for short-period massive binaries undergoing case A mass transfer. We present a grid of about 20,000 detailed binary evolution tracks with primary masses 3.5-35 Msun, orbital periods 1-5 days at a metallicity Z=0.004, assuming both conservative and non-conservative mass transfer. We perform a systematic comparison, using least-squares fitting, of the computed models with a sample of 50 double-lined eclipsing binaries in the Small Magellanic Cloud, for which fundamental stellar parameters have been determined. About 60% of the systems are currently undergoing slow mass transfer. In general we find good agreement between our models and the observed detached systems. However, for many of the semi-detached systems the observed temperature ratio is more extreme than our models predict. For the 17 semi-detached systems that we are able to match, we find a large spread in the best fitting mass-transfer efficiency; no single value of beta can explain all systems. We find a hint that initially wider systems tend to fit better to less conservative models. We show the need for more accurate temperature determinations and we find that determinations of surface abundances of nitrogen and carbon can potentially constrain the mass-transfer efficiency further.
Astronomy and Astrophysics | 2011
Joke Claeys; S. E. de Mink; O. R. Pols; J. J. Eldridge; M. Baes
Massive stars that lose their hydrogen-rich envelope down to a few tenths of a solar mass explode as extended type IIb supernovae, an intriguing subtype that links the hydrogen-rich type II supernovae with the hydrogen-poor type Ib and Ic. The progenitors may be very massive single stars that lose their envelope due to their stellar wind, but mass stripping due to interaction with a companion star in a binary system is currently considered to be the dominant formation channel. Anticipating the upcoming automated transient surveys, we computed an extensive grid of binary models with the Eggleton binary evolution code. We identify the limited range of initial orbital periods and mass ratios required to produce type IIb binary progenitors. The rate we predict from our standard models, which assume conservative mass transfer, is about six times smaller than the current rate indicated by observations. It is larger but still comparable to the rate expected from massive single stars. We evaluate extensively the effect of various assumptions such as the adopted accretion efficiency, the binary fraction and distributions for the initial binary parameters. To recover the observed rate we must generously allow for uncertainties and consider low accretion efficiencies in combination with limited angular momentum loss from the system. Motivated by the claims of detection and non-detection of companions for a few IIb supernovae, we investigate the properties of the secondary star at the moment of explosion. We identify three cases: (1) the companion is predicted to appear as a hot O star in about 90% of the cases, as a result of mass accretion during its main sequence evolution, (2) the companion becomes an over-luminous B star in about 3% of the cases, if mass accretion occurred while crossing the Hertzsprung gap or (3) in systems with very similar initial masses the companion will appear as a K supergiant. The second case, which applies to the well-studied case of SN 1993J and possibly to SN 2001ig, is the least common case and requires that the companion very efficiently accretes the transferred material – in contrast to what is required to recover the overall IIb rate. We note that relative rates quoted above depend on the assumed efficiency of semi-convective mixing: for inefficient semi-convection the presence of blue supergiant companions is expected to be more common, occurring in up to about 40% of the cases. Our study demonstrates that type IIb supernovae have the potential to teach us about the physics of binary interaction and about stellar processes such as internal mixing and possibly stellar-wind mass loss. The fast increasing number of type IIb detections from automated surveys may lead to more solid constraints on these model uncertainties in the near future.