O. Straniero
INAF
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by O. Straniero.
The Astrophysical Journal | 2009
S. Cristallo; O. Straniero; R. Gallino; Luciano Piersanti; Inma Dominguez; Michael T. Lederer
The envelope of thermally pulsing asymptotic giant branch (TP-AGB) stars undergoing periodic third dredge-up (TDU) episodes is enriched in both light and heavy elements, the ashes of a complex internal nucleosynthesis involving p, α, and n captures over hundreds of stable and unstable isotopes. In this paper, new models of low-mass AGB stars (2 M ☉), with metallicity ranging between Z = 0.0138 (the solar one) and Z = 0.0001, are presented. Main features are (1) a full nuclear network (from H to Bi) coupled to the stellar evolution code, (2) a mass loss-period-luminosity relation, based on available data for long-period variables, and (3) molecular and atomic opacities for C- and/or N-enhanced mixtures, appropriate for the chemical modifications of the envelope caused by the TDU. For each model, a detailed description of the physical and chemical evolutions is presented; moreover, we present a uniform set of yields, comprehensive of all chemical species (from hydrogen to bismuth). The main nucleosynthesis site is the thin 13C pocket, which forms in the core-envelope transition region after each TDU episode. The formation of this 13C pocket is the principal by-product of the introduction of a new algorithm, which shapes the velocity profile of convective elements at the inner border of the convective envelope: both the physical grounds and the calibration of the algorithm are discussed in detail. We find that the pockets shrink (in mass) as the star climbs the AGB, so that the first pockets, the largest ones, leave the major imprint on the overall nucleosynthesis. Neutrons are released by the 13C(α, n)16O reaction during the interpulse phase in radiative conditions, when temperatures within the pockets attain T ~ 1.0 × 108 K, with typical densities of (106-107) neutrons cm–3. Exceptions are found, as in the case of the first pocket of the metal-rich models (Z = 0.0138, Z = 0.006 and Z = 0.003), where the 13C is only partially burned during the interpulse: the surviving part is ingested in the convective zone generated by the subsequent thermal pulse (TP) and then burned at T ~ 1.5 × 108 K, thus producing larger neutron densities (up to 1011 neutrons cm–3). An additional neutron exposure, caused by the 22Ne(α, n)25Mg during the TPs, is marginally activated at large Z, but becomes an important nucleosynthesis source at low Z, when most of the 22Ne is primary. The final surface compositions of the various models reflect the differences in the initial iron-seed content and in the physical structure of AGB stars belonging to different stellar populations. Thus, at large metallicities the nucleosynthesis of light s-elements (Sr, Y, Zr) is favored, whilst, decreasing the iron content, the overproduction of heavy s-elements (Ba, La, Ce, Nd, Sm) and lead becomes progressively more important. At low metallicities (Z = 0.0001) the main product is lead. The agreement with the observed [hs/ls] index observed in intrinsic C stars at different [Fe/H] is generally good. For the solar metallicity model, we found an interesting overproduction of some radioactive isotopes, like 60Fe, as a consequence of the anomalous first 13C pocket. Finally, light elements (C, F, Ne, and Na) are enhanced at any metallicity.INAF-Osservatorio Astronomico di Collurania, 64100 Teram o, Italy and R. Gallino2,3 Dipartimento di Fisica Generale, Universitá di Torino, 10 125 Torino, Italy Center for Stellar and Planetary Astrophysics, School of Ma thematical Sciences, Monash University, P.O. Box 28, Victoria 3800, Australia and L. Piersanti 1 INAF-Osservatorio Astronomico di Collurania, 64100 Teram o, Italy and I. Domı́nguez4 Departamento de Fı́sica Teórica y del Cosmos , Universidad de Granada, 18071 Granada, Spain and M.T. Lederer 5 Institut für Astronomie, Türkenschanzstraße 17, A-1180 Wien, Austria Received/ Accepted
Astrophysical Journal Supplement Series | 2011
S. Cristallo; L. Piersanti; O. Straniero; R. Gallino; Inma Dominguez; C. Abia; G. Di Rico; M. Quintini; S. Bisterzo
By using updated stellar low-mass stars models, we systematically investigate the nucleosynthesis processes occurring in asymptotic giant branch (AGB) stars. In this paper, we present a database dedicated to the nucleosynthesis of AGB stars: FRANEC Repository of Updated Isotopic Tables & Yields (FRUITY). An interactive Web-based interface allows users to freely download the full (from H to Bi) isotopic composition, as it changes after each third dredge-up (TDU) episode and the stellar yields the models produce. A first set of AGB models, having masses in the range 1.5 ≤M/M ☉ ≤ 3.0 and metallicities 1 × 10–3 ≤ Z ≤ 2 × 10–2, is discussed. For each model, a detailed description of the physical and the chemical evolution is provided. In particular, we illustrate the details of the s-process and we evaluate the theoretical uncertainties due to the parameterization adopted to model convection and mass loss. The resulting nucleosynthesis scenario is checked by comparing the theoretical [hs/ls] and [Pb/hs] ratios to those obtained from the available abundance analysis of s-enhanced stars. On the average, the variation with the metallicity of these spectroscopic indexes is well reproduced by theoretical models, although the predicted spread at a given metallicity is substantially smaller than the observed one. Possible explanations for such a difference are briefly discussed. An independent check of the TDU efficiency is provided by the C-stars luminosity function. Consequently, theoretical C-stars luminosity functions for the Galactic disk and the Magellanic Clouds have been derived. We generally find good agreement with observations.
The Astrophysical Journal | 2001
C. Abia; M. Busso; R. Gallino; Inma Dominguez; O. Straniero; J. Isern
We present new spectroscopic observations for a sample of C(N)-type red giants. These objects belong to the class of asymptotic giant branch stars, experiencing thermal instabilities in the He-burning shell (thermal pulses). Mixing episodes called third dredge-up enrich the photosphere with newly synthesized 12C in the He-rich zone, and this is the source of the high observed ratio between carbon and oxygen (C/O ≥ 1 by number). Our spectroscopic abundance estimates confirm that, in agreement with the general understanding of the late evolutionary stages of low- and intermediate-mass stars, carbon enrichment is accompanied by the appearance of s-process elements in the photosphere. We discuss the details of the observations and of the derived abundances, focusing in particular on rubidium, a neutron density sensitive element, and on the s-elements Sr, Y, and Zr belonging to the first s-peak. The critical reaction branching at 85Kr, which determines the relative enrichment of the studied species, is discussed. Subsequently, we compare our data with recent models for s-processing in thermally pulsing asymptotic giant branch stars, at metallicities relevant for our sample. A remarkable agreement between model predictions and observations is found. Thanks to the different neutron density prevailing in low- and intermediate-mass stars, comparison with the models allows us to conclude that most C(N) stars are of low mass (M 3 M☉). We also analyze the 12C/13C ratios measured, showing that most of them cannot be explained by canonical stellar models. We discuss how this fact would require the operation of an ad hoc additional mixing, currently called cool bottom process, operating only in low-mass stars during the first ascent of the red giant branch and, perhaps, also during the asymptotic giant branch.
The Astrophysical Journal | 2002
C. Abia; Inma Dominguez; R. Gallino; M. Busso; S. Masera; O. Straniero; P. de Laverny; Bertrand Plez; J. Isern
We present the first detailed and homogeneous analysis of the s-element content in Galactic carbon stars of N type. Abundances of Sr, Y, Zr (low-mass s-elements, or ls), Ba, La, Nd, Sm, and Ce (high-mass s-elements, or hs) are derived using the spectral synthesis technique from high-resolution spectra. The N stars analyzed are of nearly solar metallicity and show moderate s-element enhancements, similar to those found in S stars, but smaller than those found in the only previous similar study (Utsumi 1985), and also smaller than those found in supergiant post-asymptotic giant branch (post-AGB) stars. This is in agreement with the present understanding of the envelope s-element enrichment in giant stars, which is increasing along the spectral sequence M → MS → S → SC → C during the AGB phase. We compare the observational data with recent s-process nucleosynthesis models for different metallicities and stellar masses. Good agreement is obtained between low-mass AGB star models (M 3 M☉) and s-element observations. In low-mass AGB stars, the 13C(α, n)16O reaction is the main source of neutrons for the s-process; a moderate spread, however, must exist in the abundance of 13C that is burnt in different stars. By combining information deriving from the detection of Tc, the infrared colors, and the theoretical relations between stellar mass, metallicity, and the final C/O ratio, we conclude that most (or maybe all) of the N stars studied in this work are intrinsic, thermally pulsing AGB stars; their abundances are the consequence of the operation of third dredge-up and are not to be ascribed to mass transfer in binary systems.
Monthly Notices of the Royal Astronomical Society | 2011
S. Bisterzo; R. Gallino; O. Straniero; S. Cristallo; F. Käppeler
High-resolution spectroscopic observations of a hundred metal-poor Carbon and s-rich stars (CEMP-s) collected from the literature are compared with the theoretical nucleosynthesis models of asymptotic giant branch (AGB) presented in Paper I (M = 1.3, 1.4, 1.5, 2 Msun, -3.6 < [Fe/H] < -1.5). The s-process enhancement detected in these objects is associated to binary systems: the more massive companion evolved faster through the thermally pulsing AGB phase (TP-AGB), synthesising in the inner He-intershell the s-elements, which are partly dredged-up to the surface during the third dredge-up (TDU) episode. The secondary observed low mass companion became CEMP-s by mass transfer of C and s-rich material from the primary AGB. We analyse the light elements as C, N, O, Na and Mg, as well as the two s-process indicators, [hs/ls] (where ls = is the the light-s peak at N = 50 and hs = the heavy-s peak at N = 82), and [Pb/hs]. We distinguish between CEMP-s with high s-process enhancement, [hs/Fe] > 1.5 (CEMP-sII), and mild s-process enhanced stars, [hs/Fe] < 1.5 (CEMP-sI). To interpret the observations, .... . Detailed analyses for individual stars will be provided in Paper III.
arXiv: Solar and Stellar Astrophysics | 2011
S. Bisterzo; R. Gallino; O. Straniero; S. Cristallo; F. Kaeppeler
High-resolution spectroscopic observations of a hundred metal-poor Carbon and s-rich stars (CEMP-s) collected from the literature are compared with the theoretical nucleosynthesis models of asymptotic giant branch (AGB) presented in Paper I (M = 1.3, 1.4, 1.5, 2 Msun, -3.6 < [Fe/H] < -1.5). The s-process enhancement detected in these objects is associated to binary systems: the more massive companion evolved faster through the thermally pulsing AGB phase (TP-AGB), synthesising in the inner He-intershell the s-elements, which are partly dredged-up to the surface during the third dredge-up (TDU) episode. The secondary observed low mass companion became CEMP-s by mass transfer of C and s-rich material from the primary AGB. We analyse the light elements as C, N, O, Na and Mg, as well as the two s-process indicators, [hs/ls] (where ls = is the the light-s peak at N = 50 and hs = the heavy-s peak at N = 82), and [Pb/hs]. We distinguish between CEMP-s with high s-process enhancement, [hs/Fe] > 1.5 (CEMP-sII), and mild s-process enhanced stars, [hs/Fe] < 1.5 (CEMP-sI). To interpret the observations, .... . Detailed analyses for individual stars will be provided in Paper III.
Monthly Notices of the Royal Astronomical Society | 2010
S. Bisterzo; R. Gallino; O. Straniero; S. Cristallo; F. Käppeler
A large sample of carbon enhanced metal-poor stars enriched in s-process elements (CEMP-s) have been observed in the Galactic halo. These stars of low mass (M � 0.9 M� ) are located on the main-sequence or the red giant phase, and do not undergo third dredge-up (TDU) episodes. The s-process enhancement is most plausibly due to accretion in a binary system from a more massive companion when on the asymptotic giant branch (AGB) phase (now a white dwarf). In order to interpret the spectroscopic observations, updated AGB models are needed to follow in detail the sprocess nucleosynthesis. We present nucleosynthesis calculations based on AGB stellar models obtained with FRANEC (Frascati Raphson-Newton Evolutionary Code) for low initial stellar masses and low metallicities. For a given metallicity, a wide spread in the abundances of the s-process elements is obtained by varying the amount of 13 C and its profile in the pocket, where the 13 C(�, n) 16 O reaction is the major neutron source, releasing neutrons in radiative conditions during the interpulse phase. We account also for the second neutron source 22 Ne(�, n) 25 Mg, partially activated during convective thermal pulses. We discuss the surface abundance of elements from carbon to bismuth, for AGB models of initial masses M = 1.3 – 2 M� , low metallicities ([Fe/H] from 1 down to 3.6) and for different 13 C-pockets efficiencies. In particular we analyse the relative behaviour of the three s-process peaks: light-s (ls at magic neutron number N = 50), heavy-s (hs at N = 82) and lead (N = 126). Two s-process indicators, [hs/ls] and [Pb/hs], are needed in order to characterise the s-process distribution. In the online material, we provide a set of data tables with surface predictions. Our final goal is to provide a full set of theoretical models of low mass low metallicity s-process enhanced stars. In a forthcoming paper, we will test our results through a comparison with observations of CEMP-s stars.
Monthly Notices of the Royal Astronomical Society | 2012
S. Bisterzo; R. Gallino; O. Straniero; S. Cristallo; F. Käppeler
We provide an individual analysis of 94 carbon enhanced metal-poor stars showing an s-process enrichment (CEMP-s) collected from the literature. The s-process enhancement observed in these stars is ascribed to mass transfer by stellar winds in a binary system from a more massive companion evolving faster toward the asymptotic giant branch (AGB) phase. The theoretical AGB nucleosynthesis models have been presented in Paper I. Several CEMP-s stars show an enhancement in both s and r-process elements (CEMP-s/r). In order to explain the peculiar abundances observed in CEMP-s/r stars, we assume that the molecular cloud from which CEMP-s formed was previously enriched in r-elements by Supernovae pollution. A general discussion and the method adopted in order to interpret the observations have been provided in Paper II. We present in this paper a detailed study of spectroscopic observations of individual stars. We consider all elements from carbon to bismuth, with particular attention to the three s-process peaks, ls (Y, Zr), hs (La, Nd, Sm) and Pb, and their ratios [hs/ls] and [Pb/hs]. The presence of an initial r-process contribution may be typically evaluated by the [La/Eu] ratio. We found possible agreements between theoretical predictions and spectroscopic data. In general, the observed [Na/Fe] (and [Mg/Fe]) provide information on the AGB initial mass, while [hs/ls] and [Pb/hs] are mainly indicators of the s-process efficiency. A range of 13C-pocket strengths is required to interpret the observations. However, major discrepancies between models and observations exist. We highlight star by star the agreements and the main problems encountered and, when possible, we suggest potential indications for further studies. These discrepancies provide starting points of debate for unsolved problems ...
arXiv: Solar and Stellar Astrophysics | 2012
S. Bisterzo; R. Gallino; O. Straniero; S. Cristallo; F. Kaeppeler
We provide an individual analysis of 94 carbon enhanced metal-poor stars showing an s-process enrichment (CEMP-s) collected from the literature. The s-process enhancement observed in these stars is ascribed to mass transfer by stellar winds in a binary system from a more massive companion evolving faster toward the asymptotic giant branch (AGB) phase. The theoretical AGB nucleosynthesis models have been presented in Paper I. Several CEMP-s stars show an enhancement in both s and r-process elements (CEMP-s/r). In order to explain the peculiar abundances observed in CEMP-s/r stars, we assume that the molecular cloud from which CEMP-s formed was previously enriched in r-elements by Supernovae pollution. A general discussion and the method adopted in order to interpret the observations have been provided in Paper II. We present in this paper a detailed study of spectroscopic observations of individual stars. We consider all elements from carbon to bismuth, with particular attention to the three s-process peaks, ls (Y, Zr), hs (La, Nd, Sm) and Pb, and their ratios [hs/ls] and [Pb/hs]. The presence of an initial r-process contribution may be typically evaluated by the [La/Eu] ratio. We found possible agreements between theoretical predictions and spectroscopic data. In general, the observed [Na/Fe] (and [Mg/Fe]) provide information on the AGB initial mass, while [hs/ls] and [Pb/hs] are mainly indicators of the s-process efficiency. A range of 13C-pocket strengths is required to interpret the observations. However, major discrepancies between models and observations exist. We highlight star by star the agreements and the main problems encountered and, when possible, we suggest potential indications for further studies. These discrepancies provide starting points of debate for unsolved problems ...
European Physical Journal A | 2005
G. Imbriani; H. Costantini; A. Formicola; A. Vomiero; C. Angulo; D. Bemmerer; R. Bonetti; C. Broggini; F. Confortola; P. Corvisiero; J. Cruz; Pierre Descouvemont; Zs. Fülöp; G. Gervino; A. Guglielmetti; C. Gustavino; Gy. Gyürky; A.P. Jesus; M. Junker; J. N. Klug; A. Lemut; R. Menegazzo; P. Prati; V. Roca; C. Rolfs; M. Romano; C. Rossi-Alvarez; F. Schümann; D. Schürmann; E. Somorjai
Abstract.The astrophysical S(E) factor of 14N(p,γ)15O has been measured for effective center-of-mass energies between Eeff = 119 and 367 keV at the LUNA facility using TiN solid targets and Ge detectors. The data are in good agreement with previous and recent work at overlapping energies. R-matrix analysis reveals that due to the complex level structure of 15O the extrapolated S(0) value is model dependent and calls for additional experimental efforts to reduce the present uncertainty in S(0) to a level of a few percent as required by astrophysical calculations.