O. Ya. Fedorov
Petersburg Nuclear Physics Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by O. Ya. Fedorov.
Physics of Atomic Nuclei | 2013
O. V. Miklukho; A. Yu. Kisselev; D. A. Aksenov; G. M. Amalsky; V. A. Andreev; S. V. Evstiukhin; O. Ya. Fedorov; G. E. Gavrilov; A. A. Izotov; L. M. Kochenda; M. P. Levchenko; D. A. Maysuzenko; V. A. Murzin; D. V. Novinsky; A. N. Prokofiev; A. V. Shvedchikov; V. Yu. Trautman; S. I. Trush; A. A. Zhdanov
The polarization of the secondary protons in the (p, 2p) reaction with the S-shell protons of nuclei 4He, 6Li, 12C, 28Si, 40Ca was measured at 1 GeV unpolarized proton beam. The spin correlation parameters Cij for the 4He and 12C targets also were for the first time obtained as well. The polarization measurements were performed by means of a two-arm magnetic spectrometer, each arm of which was equipped with the multiwire-proportional chamber polarimeter. This experiment was aimed to study a modification of the proton-proton scattering matrix in the nuclear medium.
Physics of Atomic Nuclei | 2006
O. V. Miklukho; G. M. Amalsky; V. A. Andreev; S. L. Belostotsky; D. O. Veretennikov; Yu.V. Elkin; A. A. Zhdanov; A. A. Izotov; A. Yu. Kiselev; A. I. Kovalev; L. M. Kochenda; M. P. Levchenko; T. Noro; A. N. Prokofiev; D. A. Prokofiev; Hidetsugu Sakaguchi; V. Yu. Trautman; V. A. Trofimov; S. I. Trush; O. Ya. Fedorov; K. Hatanaka; A. V. Shvedchikov
The polarization of secondary protons from the (p, 2p) reaction induced by 1-GeV protons incident to a 4He nucleus was measured in a kinematically complete experiment. By using a two-arm magnetic spectrometer, two secondary protons from this reaction were recorded in coincidence at unequal scattering angles of Θ1 = 18°−24.21° and Θ2 = 53.22° over a broad range of the recoil-nucleus momentum KB between 0 and 150 MeV/c. It was found that the measured polarization of either secondary proton is less than that observed in free elastic proton-proton scattering. The magnitude of this difference is determined by the mean binding energy of s-shell protons rather than by the effective nuclear density. The polarizations measured in inclusive quasielastic and elastic scattering of 1-GeV protons on 4He nuclei are presented for scattering angles in the range Θ1 = 18° − 24.21°.
Bulletin of The Russian Academy of Sciences: Physics | 2007
A. A. Kotov; L. A. Vaishnene; V. G. Vovchenko; Yu. A. Gavrikov; V. V. Polyakov; M. G. Tverskoi; O. Ya. Fedorov; T. Fukahori; Yu. A. Chestnov; A. V. Shvedchikov; A. I. Shchetkovskii
The results of measuring total cross sections for proton-induced fission of natPb, 209Bi, 232Th, 233U, 235U, 238U, 237Np, and 239Pu nuclei at proton energies from 200 to 1000 MeV are reported. The measurements were carried out in steps of ≈100 MeV. Complementary fission fragments were detected in coincidence by two parallel-plate avalanche gas counters placed in the beam line on both sides of the thin target close to it. Energy and isotope dependences of the fission cross sections are analyzed.
Physics of Atomic Nuclei | 2012
V. G. Vovchenko; V. V. Polyakov; O. Ya. Fedorov; Yu. A. Chestnov
The cross section for the fission of actinide nuclei that is induced by fast neutrons is considered as a fraction of the cross section for inelastic nucleon interaction with nuclei. In turn, inelastic nucleon interaction with a nucleus is treated as scattering on intranuclear nucleons. It is shown that this interaction model describes satisfactorily the cross section for the inelastic interaction of 60- to 2200-MeV nucleons for a broad set of nuclei and that the energy dependence of the cross section for the fission of actinide nuclei that is induced by 400- to 1000–MeV protons replicates the energy dependence of the cross section for inelastic interactions with respective nuclei. From the model used, it follows that the cross sections for proton-nucleus interactions exceed cross sections for respective neutron-nucleus interactions in the energy range extending up to 550 MeV; at higher energies neutron cross sections are larger than proton cross sections.
Physics of Atomic Nuclei | 2011
L. A. Vaishnene; V. G. Vovchenko; Yu. A. Gavrikov; V. I. Murzin; V. V. Polyakov; M. G. Tverskoi; O. Ya. Fedorov; Yu. A. Chestnov; A. V. Shvedchikov; A. I. Shchetkovskii
The total cross sections for 197Au and 203Tl fission induced by protons of energy varied from about 200 to 1000 MeV with a step of about 100 MeV are measured. New approximations to the energy dependences of the cross sections for the proton-induced fission of 197Au, 203Tl, natPb, and 209Bi nuclei are presented and discussed. For all of these nuclei, exponential functions are used as approximations.
Bulletin of The Russian Academy of Sciences: Physics | 2010
L. A. Vaishnene; V. G. Vovchenko; Yu. A. Gavrikov; A. A. Kotov; V. I. Murzin; V. V. Polyakov; M. G. Tverskoi; O. Ya. Fedorov; Yu. A. Chestnov; A. V. Shvedchikov; A. I. Shchetkovskii
The results from measurements of the total fission cross sections of 206Pb, 207Pb, and 208Pb nuclei for protons with energies from 207 to 1000 MeV and a step of ≈100 MeV. These results complemented by our data for 209Bi and the data of the EXFOR world base allow determination of absolute and relative contributions of the isotopic effect.
Physics of Atomic Nuclei | 2000
O. V. Miklukho; N.P. Aleshin; S. L. Belostotski; O. G. Grebenyuk; O. Ya. Fedorov; A. A. Izotov; A. Yu. Kisselev; Yu. G. Naryshkin; V.V. Nelyubin; A. N. Prokofiev; D. A. Prokofiev; Yu. A. Shcheglov; A. V. Shvedchikov; V. V. Vikhrov; A. A. Zhgun; A. A. Zhdanov
Polarization measurements in the A(p, 2p)B reactions on 6Li, 7Li, and 28Si nuclei at a proton-beam energy of 1 GeV were performed in a kinematically complete experiment. By using a two-arm magnetic spectrometer, two secondary protons were recorded in coincidence at asymmetric scattering angles of θ1=15°−26° and θ2=58.6° for residual-nucleus momenta in the range KB=0–150 MeV/c. Either arm of the spectrometer was equipped with polarimeters based on proportional chambers. The data coming from this experiment are analyzed within the distorted-wave impulse approximation. It is shown that the polarization of recoil protons formed at angle θ2 in the interaction featuring a proton from the P shell of the 7Li nucleus can be described under the assumption of an effective intranuclear-proton polarization by using the single-particle shell-model wave function of the nucleus. Our data on the polarizations of the two protons from the reaction (p, 2p) on a 28Si nucleus also suggest the effective polarization of the protons in the D shell of the 28Si nucleus. It is found that, for high recoil-nucleus momenta of KB≥90 MeV/c, the effective polarization of the protons in the P shell of the 6Li nucleus—this polarization was discovered in studying the polarization of recoil protons in the reaction 6Li(p, 2p)5He—cannot be described within the shell model assuming LS coupling. As might have been expected, the polarization of recoil protons knocked out from the S shells of the 6Li and 7Li nuclei comply well with the predictions obtained in the impulse approximation with allowance for the depolarization effect alone.
Physics of Atomic Nuclei | 2010
V. G. Vovchenko; V. V. Polyakov; O. Ya. Fedorov
The results of a partial-wave analysis of data on proton-proton interaction in the energy range 100–1300 MeV are presented. The real parts of phase shifts were found for states of orbital angular momentum up to L = 9, while their imaginary parts were determined for states of orbital angular momentum up to L = 5. The sixth parameter of the S matrix was introduced in order to describe states of total angular momentum J = 2 and 4. The inelasticity thresholds were chosen individually for each state and were found to be substantially different from one another. The resulting solution was characterized by χ2 = 1.155 per point in the case where the number of experimental data was 12 841 and by a large imaginary part of the phase shift in the 3P2-wave state at the edge of the energy range. Special features of the interaction in orbital states are discussed along with the energy dependence of integrated amplitudes and amplitudes of the scattering matrix at zero angle.
Physics of Atomic Nuclei | 2010
O. V. Miklukho; A. Yu. Kisselev; G. M. Amalsky; V. A. Andreev; O. Ya. Fedorov; G. E. Gavrilov; A. A. Izotov; L. M. Kochenda; A. I. Kovalev; D. V. Novinsky; A. N. Prokofiev; A. V. Shvedchikov; V. Yu. Trautman; S. I. Trush; A. A. Zhdanov
The polarization correlation parameter Cnn in the elastic proton-proton scattering was for the first time measured with a high statistical accuracy at 1 GeV using an unpolarized proton beam incident on an unpolarized proton target. Both outgoing protons from the reaction were detected in coincidence by means of a two-arm focusing magnetic spectrometer installed at nonsymmetric angles corresponding to the center-of-mass scattering angle Θcm = 62.25°. The correlation parameter Cnn, as well as polarizations P1 and P2 of the secondary protons, were measured by means of multiwire proportional chamber polarimeters placed at the focal planes of each spectrometer arm. The obtained data are compared with the predictions of the phase-shift analysis. The connection with the experiment on Cnn and polarization measurements in the (p, 2p) reaction on 4He and other light nuclei in similar kinematics is discussed
The 8th International symposium on polarization phenomena in nuclear physics | 2008
A. N. Prokofiev; N. P. Aleshin; S. L. Belostotski; Yu. V. Dotsenko; V. A. Efimovykh; O. Ya. Fedorov; A. A. Izotov; A. Yu. Kisselev; E.N. Komarov; O. V. Miklukho; V. I. Murzin; Yu. G. Naryshkin; D. A. Prokofiev; Yu. A. Scheglov; A. V. Shvedchikov; A. A. Zhdanov; A. A. Zhgun
The polarization of recoil protons from the reaction 6Li(p,2p)5He at 1 GeV of incident proton beam energy was measured with a new two‐arm magnetic spectrometer with a carbon polarimeter. The effective polarization of the P‐shell protons of 6Li nucleus was calculated and found to be in a qualitative agreement with the predictions of the cluster model rather than with those of the shell model.