Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Obi L. Griffith is active.

Publication


Featured researches published by Obi L. Griffith.


Nature Methods | 2007

Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing

Gordon Robertson; Martin Hirst; Matthew N. Bainbridge; Misha Bilenky; Yongjun Zhao; Thomas Zeng; Ghia Euskirchen; Bridget Bernier; Richard Varhol; Allen Delaney; Nina Thiessen; Obi L. Griffith; Ann He; Marco A. Marra; Michael Snyder; Steven J.M. Jones

We developed a method, ChIP-sequencing (ChIP-seq), combining chromatin immunoprecipitation (ChIP) and massively parallel sequencing to identify mammalian DNA sequences bound by transcription factors in vivo. We used ChIP-seq to map STAT1 targets in interferon-γ (IFN-γ)–stimulated and unstimulated human HeLa S3 cells, and compared the methods performance to ChIP-PCR and to ChIP-chip for four chromosomes. By ChIP-seq, using 15.1 and 12.9 million uniquely mapped sequence reads, and an estimated false discovery rate of less than 0.001, we identified 41,582 and 11,004 putative STAT1-binding regions in stimulated and unstimulated cells, respectively. Of the 34 loci known to contain STAT1 interferon-responsive binding sites, ChIP-seq found 24 (71%). ChIP-seq targets were enriched in sequences similar to known STAT1 binding motifs. Comparisons with two ChIP-PCR data sets suggested that ChIP-seq sensitivity was between 70% and 92% and specificity was at least 95%.


Nature Genetics | 2010

Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin

Ryan D. Morin; Nathalie A. Johnson; Tesa Severson; Andrew J. Mungall; Jianghong An; Rodrigo Goya; Jessica E. Paul; Merrill Boyle; Bruce Woolcock; Florian Kuchenbauer; Damian Yap; R. Keith Humphries; Obi L. Griffith; Sohrab P. Shah; Henry Zhu; Michelle Kimbara; Pavel Shashkin; Jean F Charlot; Marianna Tcherpakov; Richard Corbett; Angela Tam; Richard Varhol; Duane E. Smailus; Michelle Moksa; Yongjun Zhao; Allen Delaney; Hong Qian; Inanc Birol; Jacqueline E. Schein; Richard A. Moore

Follicular lymphoma (FL) and the GCB subtype of diffuse large B-cell lymphoma (DLBCL) derive from germinal center B cells. Targeted resequencing studies have revealed mutations in various genes encoding proteins in the NF-κB pathway that contribute to the activated B-cell (ABC) DLBCL subtype, but thus far few GCB-specific mutations have been identified. Here we report recurrent somatic mutations affecting the polycomb-group oncogene EZH2, which encodes a histone methyltransferase responsible for trimethylating Lys27 of histone H3 (H3K27). After the recent discovery of mutations in KDM6A (UTX), which encodes the histone H3K27me3 demethylase UTX, in several cancer types, EZH2 is the second histone methyltransferase gene found to be mutated in cancer. These mutations, which result in the replacement of a single tyrosine in the SET domain of the EZH2 protein (Tyr641), occur in 21.7% of GCB DLBCLs and 7.2% of FLs and are absent from ABC DLBCLs. Our data are consistent with the notion that EZH2 proteins with mutant Tyr641 have reduced enzymatic activity in vitro.


Cell Reports | 2013

Endocrine-Therapy-Resistant ESR1 Variants Revealed by Genomic Characterization of Breast-Cancer-Derived Xenografts

Shunqiang Li; Dong Shen; Jieya Shao; Robert Crowder; Wenbin Liu; Aleix Prat; Xiaping He; Shuying Liu; Jeremy Hoog; Charles Lu; Li Ding; Obi L. Griffith; Christopher A. Miller; Dave Larson; Robert S. Fulton; Michelle L. K. Harrison; Tom Mooney; Joshua F. McMichael; Jingqin Luo; Yu Tao; Rodrigo Franco Gonçalves; Christopher Schlosberg; Jeffrey F. Hiken; Laila Saied; César Sánchez; Therese Giuntoli; Caroline Bumb; Crystal Cooper; Robert T. Kitchens; Austin Lin

To characterize patient-derived xenografts (PDXs) for functional studies, we made whole-genome comparisons with originating breast cancers representative of the major intrinsic subtypes. Structural and copy number aberrations were found to be retained with high fidelity. However, at the single-nucleotide level, variable numbers of PDX-specific somatic events were documented, although they were only rarely functionally significant. Variant allele frequencies were often preserved in the PDXs, demonstrating that clonal representation can be transplantable. Estrogen-receptor-positive PDXs were associated with ESR1 ligand-binding-domain mutations, gene amplification, or an ESR1/YAP1 translocation. These events produced different endocrine-therapy-response phenotypes in human, cell line, and PDX endocrine-response studies. Hence, deeply sequenced PDX models are an important resource for the search for genome-forward treatment options and capture endocrine-drug-resistance etiologies that are not observed in standard cell lines. The originating tumor genome provides a benchmark for assessing genetic drift and clonal representation after transplantation.


Nature Methods | 2010

Alternative expression analysis by RNA sequencing

Malachi Griffith; Obi L. Griffith; Jill Mwenifumbo; Rodrigo Goya; A. Sorana Morrissy; Ryan D. Morin; Richard Corbett; Michelle J. Tang; Ying-Chen Hou; Trevor Pugh; Gordon Robertson; Adrian Ally; Jennifer Asano; Susanna Y. Chan; Haiyan I. Li; Helen McDonald; Kevin Teague; Yongjun Zhao; Thomas Zeng; Allen Delaney; Martin Hirst; Gregg B. Morin; Steven J.M. Jones; Isabella T. Tai; Marco A. Marra

In alternative expression analysis by sequencing (ALEXA-seq), we developed a method to analyze massively parallel RNA sequence data to catalog transcripts and assess differential and alternative expression of known and predicted mRNA isoforms in cells and tissues. As proof of principle, we used the approach to compare fluorouracil-resistant and -nonresistant human colorectal cancer cell lines. We assessed the sensitivity and specificity of the approach by comparison to exon tiling and splicing microarrays and validated the results with reverse transcription–PCR, quantitative PCR and Sanger sequencing. We observed global disruption of splicing in fluorouracil-resistant cells characterized by expression of new mRNA isoforms resulting from exon skipping, alternative splice site usage and intron retention. Alternative expression annotation databases, source code, a data viewer and other resources to facilitate analysis are available at http://www.alexaplatform.org/alexa_seq/.


Journal of Clinical Oncology | 2006

Meta-Analysis and Meta-Review of Thyroid Cancer Gene Expression Profiling Studies Identifies Important Diagnostic Biomarkers

Obi L. Griffith; Adrienne Melck; Steven J.M. Jones; Sam M. Wiseman

PURPOSE An estimated 4% to 7% of the population will develop a clinically significant thyroid nodule during their lifetime. In many cases, preoperative diagnoses by needle biopsy are inconclusive. Thus, there is a clear need for improved diagnostic tests to distinguish malignant from benign thyroid tumors. The recent development of high-throughput molecular analytic techniques should allow the rapid evaluation of new diagnostic markers. However, researchers are faced with an overwhelming number of potential markers from numerous thyroid cancer expression profiling studies. MATERIALS AND METHODS To address this challenge, we have carried out a comprehensive meta-review of thyroid cancer biomarkers from 21 published studies. A gene ranking system that considers the number of comparisons in agreement, total number of samples, average fold-change and direction of change was devised. RESULTS We have observed that genes are consistently reported by multiple studies at a highly significant rate (P < .05). Comparison with a meta-analysis of studies reprocessed from raw data showed strong concordance with our method. CONCLUSION Our approach represents a useful method for identifying consistent gene expression markers when raw data are unavailable. A review of the top 12 candidates revealed well known thyroid cancer markers such as MET, TFF3, SERPINA1, TIMP1, FN1, and TPO as well as relatively novel or uncharacterized genes such as TGFA, QPCT, CRABP1, FCGBP, EPS8 and PROS1. These candidates should help to develop a panel of markers with sufficient sensitivity and specificity for the diagnosis of thyroid tumors in a clinical setting.


Nucleic Acids Research | 2007

ORegAnno: an open-access community-driven resource for regulatory annotation

Obi L. Griffith; Stephen B. Montgomery; Bridget Bernier; Bryan Chu; Katayoon Kasaian; Stein Aerts; Shaun Mahony; Monica C. Sleumer; Mikhail Bilenky; Maximilian Haeussler; Malachi Griffith; Steven M. Gallo; Belinda Giardine; Bart Hooghe; Peter Van Loo; Enrique Blanco; Amy Ticoll; Stuart Lithwick; Elodie Portales-Casamar; Ian J. Donaldson; Gordon Robertson; Claes Wadelius; Pieter De Bleser; Dominique Vlieghe; Marc S. Halfon; Wyeth W. Wasserman; Ross C. Hardison; Casey M. Bergman; Steven J.M. Jones

ORegAnno is an open-source, open-access database and literature curation system for community-based annotation of experimentally identified DNA regulatory regions, transcription factor binding sites and regulatory variants. The current release comprises 30 145 records curated from 922 publications and describing regulatory sequences for over 3853 genes and 465 transcription factors from 19 species. A new feature called the ‘publication queue’ allows users to input relevant papers from scientific literature as targets for annotation. The queue contains 4438 gene regulation papers entered by experts and another 54 351 identified by text-mining methods. Users can enter or ‘check out’ papers from the queue for manual curation using a series of user-friendly annotation pages. A typical record entry consists of species, sequence type, sequence, target gene, binding factor, experimental outcome and one or more lines of experimental evidence. An evidence ontology was developed to describe and categorize these experiments. Records are cross-referenced to Ensembl or Entrez gene identifiers, PubMed and dbSNP and can be visualized in the Ensembl or UCSC genome browsers. All data are freely available through search pages, XML data dumps or web services at: http://www.oreganno.org.


Nature | 2015

Convergent loss of PTEN leads to clinical resistance to a PI(3)Kα inhibitor

Dejan Juric; Pau Castel; Malachi Griffith; Obi L. Griffith; Helen H. Won; Haley Ellis; Saya H. Ebbesen; Benjamin J. Ainscough; Avinash Ramu; Gopa Iyer; Ronak Shah; Tiffany Huynh; Mari Mino-Kenudson; Dennis C. Sgroi; Steven J. Isakoff; Ashraf Thabet; Leila Elamine; David B. Solit; Scott W. Lowe; Cornelia Quadt; Malte Peters; Adnan Derti; Robert Schegel; Alan Huang; Elaine R. Mardis; Michael F. Berger; José Baselga; Maurizio Scaltriti

Broad and deep tumour genome sequencing has shed new light on tumour heterogeneity and provided important insights into the evolution of metastases arising from different clones. There is an additional layer of complexity, in that tumour evolution may be influenced by selective pressure provided by therapy, in a similar fashion to that occurring in infectious diseases. Here we studied tumour genomic evolution in a patient (index patient) with metastatic breast cancer bearing an activating PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha, PI(3)Kα) mutation. The patient was treated with the PI(3)Kα inhibitor BYL719, which achieved a lasting clinical response, but the patient eventually became resistant to this drug (emergence of lung metastases) and died shortly thereafter. A rapid autopsy was performed and material from a total of 14 metastatic sites was collected and sequenced. All metastatic lesions, when compared to the pre-treatment tumour, had a copy loss of PTEN (phosphatase and tensin homolog) and those lesions that became refractory to BYL719 had additional and different PTEN genetic alterations, resulting in the loss of PTEN expression. To put these results in context, we examined six other patients also treated with BYL719. Acquired bi-allelic loss of PTEN was found in one of these patients, whereas in two others PIK3CA mutations present in the primary tumour were no longer detected at the time of progression. To characterize our findings functionally, we examined the effects of PTEN knockdown in several preclinical models (both in cell lines intrinsically sensitive to BYL719 and in PTEN-null xenografts derived from our index patient), which we found resulted in resistance to BYL719, whereas simultaneous PI(3)K p110β blockade reverted this resistance phenotype. We conclude that parallel genetic evolution of separate metastatic sites with different PTEN genomic alterations leads to a convergent PTEN-null phenotype resistant to PI(3)Kα inhibition.


Cancer Research | 2008

Phosphorylated Caveolin-1 Regulates Rho/ROCK-Dependent Focal Adhesion Dynamics and Tumor Cell Migration and Invasion

Bharat H. Joshi; Scott S. Strugnell; Jacky G. Goetz; Liliana D. Kojic; Michael E. Cox; Obi L. Griffith; Simon K. Chan; Steven J.M. Jones; Sher-Ping Leung; Hamid Masoudi; Samuel Leung; Sam M. Wiseman; Ivan R. Nabi

Rho/ROCK signaling and caveolin-1 (Cav1) are implicated in tumor cell migration and metastasis; however, the underlying molecular mechanisms remain poorly defined. Cav1 was found here to be an independent predictor of decreased survival in breast and rectal cancer and significantly associated with the presence of distant metastasis for colon cancer patients. Rho/ROCK signaling promotes tumor cell migration by regulating focal adhesion (FA) dynamics through tyrosine (Y14) phosphorylation of Cav1. Phosphorylated Cav1 is localized to protrusive domains of tumor cells and Cav1 tyrosine phosphorylation is dependent on Src kinase and Rho/ROCK signaling. Increased levels of phosphorylated Cav1 were associated with elevated GTP-RhoA levels in metastatic tumor cells of various tissue origins. Stable expression and knockdown studies of Cav1 in tumor cells showed that phosphorylated Cav1 expression stimulates Rho activation, stabilizes FAK association with FAs, and promotes cell migration and invasion in a ROCK-dependent and Src-dependent manner. Tyrosine-phosphorylated Cav1, therefore, functions as an effector of Rho/ROCK signaling in the regulation of FA turnover and, thereby, tumor cell migration and invasion. These studies define a feedback loop between Rho/ROCK, Src, and phosphorylated Cav1 in tumor cell protrusions, identifying a novel function for Cav1 in tumor metastasis that may contribute to the poor prognosis of some Cav1-expressing tumors.


Genome Biology | 2010

Evolution of an adenocarcinoma in response to selection by targeted kinase inhibitors.

Steven J.M. Jones; Janessa Laskin; Yvonne Y. Li; Obi L. Griffith; Jianghong An; Mikhail Bilenky; Yaron S N Butterfield; Timothee Cezard; Eric Chuah; Richard Corbett; Anthony P. Fejes; Malachi Griffith; John Yee; Montgomery Martin; Michael Mayo; Nataliya Melnyk; Ryan D. Morin; Trevor J. Pugh; Tesa Severson; Sohrab P. Shah; Margaret Sutcliffe; Angela Tam; Jefferson Terry; Nina Thiessen; Thomas A. Thomson; Richard Varhol; Thomas Zeng; Yongjun Zhao; Richard A. Moore; David Huntsman

BackgroundAdenocarcinomas of the tongue are rare and represent the minority (20 to 25%) of salivary gland tumors affecting the tongue. We investigated the utility of massively parallel sequencing to characterize an adenocarcinoma of the tongue, before and after treatment.ResultsIn the pre-treatment tumor we identified 7,629 genes within regions of copy number gain. There were 1,078 genes that exhibited increased expression relative to the blood and unrelated tumors and four genes contained somatic protein-coding mutations. Our analysis suggested the tumor cells were driven by the RET oncogene. Genes whose protein products are targeted by the RET inhibitors sunitinib and sorafenib correlated with being amplified and or highly expressed. Consistent with our observations, administration of sunitinib was associated with stable disease lasting 4 months, after which the lung lesions began to grow. Administration of sorafenib and sulindac provided disease stabilization for an additional 3 months after which the cancer progressed and new lesions appeared. A recurring metastasis possessed 7,288 genes within copy number amplicons, 385 genes exhibiting increased expression relative to other tumors and 9 new somatic protein coding mutations. The observed mutations and amplifications were consistent with therapeutic resistance arising through activation of the MAPK and AKT pathways.ConclusionsWe conclude that complete genomic characterization of a rare tumor has the potential to aid in clinical decision making and identifying therapeutic approaches where no established treatment protocols exist. These results also provide direct in vivo genomic evidence for mutational evolution within a tumor under drug selection and potential mechanisms of drug resistance accrual.


PLOS Computational Biology | 2014

SciClone: Inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution

Christopher A. Miller; Brian S. White; Nathan D. Dees; Malachi Griffith; John S. Welch; Obi L. Griffith; Ravi Vij; Michael H. Tomasson; Timothy A. Graubert; Matthew J. Walter; Matthew J. Ellis; William Schierding; John F. DiPersio; Timothy J. Ley; Elaine R. Mardis; Richard K. Wilson; Li Ding

The sensitivity of massively-parallel sequencing has confirmed that most cancers are oligoclonal, with subpopulations of neoplastic cells harboring distinct mutations. A fine resolution view of this clonal architecture provides insight into tumor heterogeneity, evolution, and treatment response, all of which may have clinical implications. Single tumor analysis already contributes to understanding these phenomena. However, cryptic subclones are frequently revealed by additional patient samples (e.g., collected at relapse or following treatment), indicating that accurately characterizing a tumor requires analyzing multiple samples from the same patient. To address this need, we present SciClone, a computational method that identifies the number and genetic composition of subclones by analyzing the variant allele frequencies of somatic mutations. We use it to detect subclones in acute myeloid leukemia and breast cancer samples that, though present at disease onset, are not evident from a single primary tumor sample. By doing so, we can track tumor evolution and identify the spatial origins of cells resisting therapy.

Collaboration


Dive into the Obi L. Griffith's collaboration.

Top Co-Authors

Avatar

Malachi Griffith

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Elaine R. Mardis

Nationwide Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Steven J.M. Jones

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Kilannin Krysiak

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Zachary L. Skidmore

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Christopher A. Miller

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Benjamin J. Ainscough

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Robert S. Fulton

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Richard Wilson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Alex H. Wagner

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge