Octavio Mercado-Gómez
National Autonomous University of Mexico
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Octavio Mercado-Gómez.
Frontiers in Cellular Neuroscience | 2015
Jorge Landgrave-Gómez; Octavio Mercado-Gómez; Rosalinda Guevara-Guzmán
The role of epigenetic mechanisms in the function and homeostasis of the central nervous system (CNS) and its regulation in diseases is one of the most interesting processes of contemporary neuroscience. In the last decade, a growing body of literature suggests that long-term changes in gene transcription associated with CNS’s regulation and neurological disorders are mediated via modulation of chromatin structure. “Epigenetics”, introduced for the first time by Waddington in the early 1940s, has been traditionally referred to a variety of mechanisms that allow heritable changes in gene expression even in the absence of DNA mutation. However, new definitions acknowledge that many of these mechanisms used to perpetuate epigenetic traits in dividing cells are used by neurons to control a variety of functions dependent on gene expression. Indeed, in the recent years these mechanisms have shown their importance in the maintenance of a healthy CNS. Moreover, environmental inputs that have shown effects in CNS diseases, such as nutrition, that can modulate the concentration of a variety of metabolites such as acetyl-coenzyme A (acetyl-coA), nicotinamide adenine dinucleotide (NAD+) and beta hydroxybutyrate (β-HB), regulates some of these epigenetic modifications, linking in a precise way environment with gene expression. This manuscript will portray what is currently understood about the role of epigenetic mechanisms in the function and homeostasis of the CNS and their participation in a variety of neurological disorders. We will discuss how the machinery that controls these modifications plays an important role in processes involved in neurological disorders such as neurogenesis and cell growth. Moreover, we will discuss how environmental inputs modulate these modifications producing metabolic and physiological alterations that could exert beneficial effects on neurological diseases. Finally, we will highlight possible future directions in the field of epigenetics and neurological disorders.
Neurochemical Research | 2008
Octavio Mercado-Gómez; Karla Hernández-Fonseca; Alexa Villavicencio-Queijeiro; Lourdes Massieu; Jesús Chimal-Monroy; Clorinda Arias
Glycogen synthase kinase GSK-3β has been identified as one of the major candidates mediating tau hyperphosphorylation at the same sites as those present in tau protein in brain from Alzheimer′s disease (AD) patients. However, the signal transduction pathways involved in the abnormal activation of GSK-3β, have not been completely elucidated. GSK-3β activity is repressed by the canonical Wnt signaling pathway, but it is also modulated through the PI3K/Akt route. Recent studies have suggested that Wnt signaling might be involved in the pathophysiology of AD. On the other hand, modulators of the PI3K pathway might be reduced during aging leading to a sustained activation of GSK-3β, which in turn would increase the risk of tau hyperphosphorylation. The role of Wnt and PI3K signaling inhibition on the extent of tau phosphorylation and neuronal morphology has not been completely elucidated. Thus, in the present investigation we analyzed the effects of different negative modulators of the Wnt and the PI3K pathways on GSK-3β activation and phosphorylation of tau at the PHF-1 epitope in cortical cultured neurons and hippocampal slices from adult rat brain. Changes in the microtubule network were also studied. We found that a variety of Wnt and PI3K inhibitors, significantly increased tau phosphorylation at the PHF-1 site, induced the disarrangement of the microtubule network and the accumulation of tau within cell bodies. These changes correlated with alterations in neuronal morphology.
Neurochemical Research | 2008
Patricia Ferrera; Octavio Mercado-Gómez; Martín Silva-Aguilar; Mahara Valverde; Clorinda Arias
Alterations in brain cholesterol concentration and metabolism seem to be involved in Alzheimer’s disease (AD). In fact, several experimental studies have reported that modification of cholesterol content can influence the expression of the amyloid precursor protein (APP) and amyloid β peptide (Aβ) production. However, it remains to be determined if changes in neuronal cholesterol content may influence the toxicity of Aβ peptides and the mechanism involved. Aged mice, AD patients and neurons exposed to Aβ, show a significant increase in membrane-associated oxidative stress. Since Aβ is able to promote oxidative stress directly by catalytically producing H2O2 from cholesterol, the present work analyzed the effect of high cholesterol incorporated into human neuroblastoma cells in Aβ-mediated neurotoxicity and the role of reactive oxygen species (ROS) generation. Neuronal viability was studied also in the presence of 24S-hydroxycholesterol, the main cholesterol metabolite in brain, as well as the potential protective role of the lipophilic statin, lovastatin.
Journal of Neuroscience Research | 2004
Octavio Mercado-Gómez; Patricia Ferrera; Clorinda Arias
Microtubules and their associated proteins play a prominent role in neuronal morphology, axonal transport, neuronal plasticity, and neuronal degeneration. It has been proposed that microtubule damage is sufficient to induce neuronal death. In this regard, the microtubule‐stabilizing agent Taxol could be a useful tool to reproduce some aspects of neurodegenerative diseases associated with disturbances of the cytoskeleton and alterations in axonal transport. Although differential effects of Taxol on neuronal viability have been found in vitro, Taxol toxicity in the central nervous system remains to be addressed. We studied the effects of Taxol on neuronal morphology and viability as well as changes in microtubule‐associated proteins MAP2 and tau in rat hippocampus. Our results show that Taxol induces dose‐dependent neuronal death accompanied by the loss of MAP2 and the presence of dystrophic neurites. Interestingly paired helical filament (PHF)‐1 immunoreactivity, which is associated with a phosphorylated epitope of tau proteins, was induced in the damaged hippocampus. Our results suggest that microtubule dynamics have a role in maintenance of neuronal morphology and survival in vivo, and that modifications in microtubule dynamics, may alter the content and neuronal distribution of MAP2 and promote alterations in the phosphorylation state of tau.
Epilepsy Research | 2014
Octavio Mercado-Gómez; Jorge Landgrave-Gómez; Virginia Arriaga-Ávila; Adriana Nebreda-Corona; Rosalinda Guevara-Guzmán
Seizures have been shown to upregulate the expression of numerous extracellular matrix molecules. Tenascin C (TNC) is an extracellular matrix protein involved in several physiological roles and in pathological conditions. Though TNC upregulation has been described after excitotoxins injection, to date there is no research work on the signal transduction pathway(s) participating in TNC protein overproduction. The aim of this study was to evaluate the role of TGF-β signaling pathway on TNC upregulation. In this study, we used male rats, which were injected with saline or pilocarpine to induce status epilepticus (SE) and killed 24h, 3 and 7 days after pilocarpine administration. For evaluating biochemical changes, we measured protein content of TNC, TGF-β1 and phospho-Smad2/3 for localization of TNC in coronal brain hippocampus at 24h, 3 and 7 days after pilocarpine-caused SE. We found a significant increase of TNC protein content in hippocampal homogenates after 1, 3, and 7 days of pilocarpine-caused SE, together with an enhancement of TNC immunoreactivity in several hippocampal layers and the dentate gyrus field where more dramatic changes occurred. We also observed a significant enhancement of protein content of both the TGF-β1 and the critical downstream transduction effector phospho-Smad2/3 throughout the chronic exposure. Interestingly, animals injected with SB-431542, a TGF-β-type I receptor inhibitor, decreased TNC content in cytosolic fraction and diminished phospho-Smad2/3 content in both cytoplasmic and nuclear fraction compared with pilocarpine vehicle-injected. These findings suggest the participation of TGF-β signaling pathway on upregulation of TNC which in turn support the idea that misregulation of this signaling pathway produces changes that may contribute to disease.
Frontiers in Cellular Neuroscience | 2016
Jorge Landgrave-Gómez; Octavio Mercado-Gómez; Mario Vázquez-García; Víctor Rodríguez-Molina; Laura Córdova-Dávalos; Virginia Arriaga-Ávila; Alfredo Miranda-Martínez; Rosalinda Guevara-Guzmán
A new generation of antiepileptic drugs has emerged; however, one-third of epilepsy patients do not properly respond to pharmacological treatments. The purpose of the present study was to investigate whether time-restricted feeding (TRF) has an anticonvulsant effect and whether this restrictive diet promotes changes in energy metabolism and epigenetic modifications in a pilocarpine-induced seizure model. To resolve our hypothesis, one group of rats had free access to food and water ad libitum (AL) and a second group underwent a TRF schedule. We used the lithium-pilocarpine model to induce status epilepticus (SE), and behavioral seizure monitoring was analyzed. Additionally, an electroencephalography (EEG) recording was performed to verify the effect of TRF on cortical electrical activity after a pilocarpine injection. For biochemical analysis, animals were sacrificed 24 h after SE and hippocampal homogenates were used to evaluate the proteins related to metabolism and chromatin structure. Our results showed that TRF had an anticonvulsant effect as measured by the prolonged latency of forelimb clonus seizure, a decrease in the seizure severity score and fewer animals reaching SE. Additionally, the power of the late phase EEG recordings in the AL group was significantly higher than the TRF group. Moreover, we found that TRF is capable of inducing alterations in signaling pathways that regulate energy metabolism, including an increase in the phosphorylation of AMP dependent kinase (AMPK) and a decrease in the phosphorylation of Akt kinase. Furthermore, we found that TRF was able to significantly increase the beta hydroxybutyrate (β-HB) concentration, an endogenous inhibitor of histone deacetylases (HDACs). Finally, we found a significant decrease in HDAC activity as well as an increase in acetylation on histone 3 (H3) in hippocampal homogenates from the TRF group. These findings suggest that alterations in energy metabolism and the increase in β-HB mediated by TRF may inhibit HDAC activity, thus increasing histone acetylation and producing changes in the chromatin structure, which likely facilitates the transcription of a subset of genes that confer anticonvulsant activity.
Journal of Molecular Neuroscience | 2014
Virginia Arriaga-Ávila; Eduardo Martínez-Abundis; Beatriz Eugenia Cárdenas-Morales; Octavio Mercado-Gómez; Erick Aburto-Arciniega; Alfredo Miranda-Martínez; Keith M. Kendrick; Rosalinda Guevara-Guzmán
We investigated the effect of restraint on the release of dopamine, GABA and glutamate in the medial prefrontal cortex (mPFC) of lactating compared with virgin Wistar female rats; besides the expression of D1, neuropeptide Y Y2, GABA receptors and corticotropin-releasing factor (CRF). Results from microdialysis experiments showed that basal dopamine and GABA, but not glutamate, concentrations were higher in lactating rats. In virgin animals, immobilization caused significant increase in dopamine, whereas GABA was unchanged and glutamate reduced. In lactating animals, restrain significantly decreased dopamine concentrations and, in contrast to virgin animals, GABA and glutamate concentrations increased. We found a higher expression of CRF, as well as the D1 and neuropeptide Y Y2 receptors in the left mPFC of virgin stressed rats; also, only stressed lactating animals showed a significant increase in immunopositive cells to GABA in the left cingulate cortex; meanwhile, a significant decrease was measured in virgin rats after stress in the left prelimbic region. The increased inhibition of the mPFC dopamine cells during stress and the down-regulated expression of the neuropeptide Y Y2 receptor may explain the lower CRF and hyporesponse to stress measured in lactating animals. Interestingly, participation of mPFC in stress regulation seems to be lateralized.
Epilepsy Research | 2016
Laura Córdova-Dávalos; Dulce Carrera-Calvo; Jael Solís-Navarrete; Octavio Mercado-Gómez; Virginia Arriaga-Ávila; Lourdes Teresa Agredano-Moreno; Luis Felipe Jiménez-García; Rosalinda Guevara-Guzmán
Many reports investigating the hippocampus have demonstrated an increase in neuronal damage, cellular loss, oxidative stress and mitochondrial DNA damage during status epilepticus (SE); however, information regarding alterations in mitochondrial fission and fusion events in SE is lacking. The aim of the present study was to examine the possible imbalance between mitochondrial fission and fusion in the hippocampus of male rats after acute seizure mediated by SE. In this study, we used ninety animals were randomly divided into control and SE groups and subjected to the lithium-pilocarpine model of epilepsy. Hippocampi were obtained at 3, 24 and 72h after SE, and the cytoplasmic and mitochondrial fractions of the cells were used to analyze changes in the Drp1 and Fis1 fission proteins and the Mfn1 and Opa1 fusion proteins by western blot analysis. Moreover, changes in the expression of fission and fusion mRNA transcripts were evaluated by real-time PCR. Mitochondrial morphology was also analyzed using standard transmission electron microscopy. Our data showed that the fission-related mRNA Drp1 was down-regulated rapidly after SE, while Fis1 did not show any significant changes in expression. Moreover, the mitochondrial fusion-associated proteins Mfn1 and Opa1 exhibited an increase in expression at 72h after SE. Electron microphotography revealed several morphological changes, such as swollen mitochondria and damage of the inner mitochondrial membrane, at 24h; at 72h elongation of some mitochondrial was also observed. Our results suggest that after the initiation of SE, the main regulator of the fission mRNA Drp1 is down-regulated, which in turn regulates mitochondrial fission and leads to an increase in the Mfn1 and Opa1 proteins to induce mitochondrial fusion, suggesting an imbalance of the fission and fusion processes.
Neurological Research | 2017
C. Bernal-Mondragón; Virginia Arriaga-Ávila; E. Martínez-Abundis; B. Barrera-Mera; Octavio Mercado-Gómez; Rosalinda Guevara-Guzmán
Abstract Objective: We investigated the short- and long-term effects of extremely low-frequency electromagnetic fields (EMF) on social recognition behavior and expression of α- and β-estrogen receptors (ER). Methods: Rats were exposed to 60-Hz electromagnetic fields for 9 or 30 days and tested for social recognition behavior. Immunohistochemistry and western blot assays were performed to evaluate α- and β-ER expression in the olfactory bulb of intact, ovariectomized (OVX), and ovariectomized+estradiol (E2) replacement (OVX+E2). Results: Ovariectomization showed impairment of social recognition after 9 days of EMF exposure and a complete recovery after E2 replacement and so did those after 30 days. Short EMF exposure increased expression of β-ER in intact, but not in the others. Longer exposure produced a decrease in intact but an increase in OVX and OVX+E2. Discussion: Our findings suggest a significant role for β-estrogen receptors and a lack of effect for α-estrogen receptors on a social recognition task. Abbreviations: EMF: extremely low frequency electromagnetic fields; ERs: estrogen receptors; OB: olfactory bulb; OVX: ovariectomized; OVX + E2: ovariectomized + estradiol replacement; IEI: interexposure interval; β-ER: beta estrogen receptor; E2: replacement of estradiol; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; WB: Western blot; PBS: phosphate-buffer saline; PB: phosphate-buffer
Epilepsy Research | 2018
Octavio Mercado-Gómez; Laura Córdova-Dávalos; Delfina García-Betanzo; Luisa Rocha; Mario Alonso-Vanegas; Jesús Cienfuegos; Rosalinda Guevara-Guzmán
Neuroinflammation has been shown to constitute a crucial mechanism in the pathophysiology of epileptic brain and several genes of inflammatory mediators have been detected in surgically resected hippocampus tissue but not in non-related seizure brain regions. Interestingly, it has been reported an olfactory dysfunction in frontal lobe epilepsy (FLE). Our aim was to quantify the gene expression of inflammatory-related and nitric oxide synthase genes in olfactory bulbs (OB) tissue from FLE patients. RNA was isolated from OB resection of FLE patients and autopsy subjects without any neurological disease (n = 7, each). After cDNA synthesis, we performed qPCR for interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), nuclear factor κB p65 (RELA), Toll-like receptor 4 (TLR 4), its agonist high mobility group box 1 (HMGB 1) as well nitric oxide synthase isozymes (NOS 1, 2 and 3). We found a significant increase in gene expression of pro-inflammatory cytokines (IL-1β, IL-6 and TNFα), TLR4 receptor and in its agonist HMGB1 and the downstream transcription factor NFκB p65. Moreover, we observed an increase of both NOS1 and NOS3 and a slightly increase of NOS2; however, it was not significant. Our study describes the overexpression of inflammatory-related genes and NOS isozymes in OB from FLE patients. Even though, the number of patients was limited, our findings could point out that neuroinflammation and nitrosative stress-related genes in the OB could be produced in general manner in all brain regions and thus contribute in part, to the olfactory dysfunction observed in FLE patients.