Odelta dos Santos
Universidade Federal do Rio Grande do Sul
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Odelta dos Santos.
Infection, Genetics and Evolution | 2015
Débora da Luz Becker; Odelta dos Santos; Amanda Piccoli Frasson; Graziela Vargas Rigo; Alexandre José Macedo; Tiana Tasca
Trichomonas vaginalis is the etiological agent of trichomoniasis, the most common non-viral sexually transmitted disease (STD) in world, with 276.4 million new cases each year. T. vaginalis can be naturally infected with Mycoplasma hominis and Trichomonasvirus species. This study aimed to evaluate the prevalence of T. vaginalis infected with four distinct T. vaginalis viruses (TVVs) and M. hominis among isolates from patients in Porto Alegre city, South Brazil. An additional goal of this study was to investigate whether there is association between metronidazole resistance and the presence of M. hominis during TVV infection. The RNA expression level of the pyruvate ferredoxin oxidoreductase (PFOR) gene was also evaluated among metronidazole-resistant and metronidazole-sensitive T. vaginalis isolates. A total of 530 urine samples were evaluated, and 5.7% samples were positive for T. vaginalis infection. Among them, 4.51% were isolated from female patients and 1.12% were from male patients. Remarkably, the prevalence rates of M. hominis and TVV-positive T. vaginalis isolates were 56.7% and 90%, respectively. Most of the T. vaginalis isolates were metronidazole-sensitive (86.7%), and only four isolates (13.3%) were resistant. There is no statistically significant association between infection by M. hominis and infection by TVVs. Our results refute the hypothesis that the presence of the M. hominis and TVVs is enough to confer metronidazole resistance to T. vaginalis isolates. Additionally, the role of PFOR RNA expression levels in metronidazole resistance as the main mechanism of resistance to metronidazole could not be established. This study is the first report of the T. vaginalis infection by M. hominis and TVVs in a large collection of isolates from South Brazil.
Experimental Parasitology | 2013
Marina Scopel; Odelta dos Santos; Amanda Piccoli Frasson; Wolf-Rainer Abraham; Tiana Tasca; Amelia Teresinha Henriques; Alexandre José Macedo
Trichomonas vaginalis is the causative agent of trichomonosis, the most common non-viral sexually transmitted disease. Infection with this protozoan may have serious consequences, especially for women. Currently, 5-nitroimidazole drugs are the treatment of choice for trichomonosis, but the emergence of resistance has limited the effectiveness of this therapy. In this context, this study aimed to evaluate the anti-T. vaginalis activity of marine-associated fungi found in the South Brazilian Coast. A total of 42 marine-associated fungal species (126 filtrate samples) isolated from 39 different marine organisms, mainly sponges, were selected to be screened against T. vaginalis. Of these, two filtrate samples from Hypocrea lixii F02 and Penicillium citrinum F40 showed significant growth-inhibitory activity (up to 100%) against ATCC 30236 and fresh clinical isolates, including a metronidazole-resistant isolate. Minimum inhibitory concentration (MIC) values of H. lixii F02 and P. citrinum F40 samples for all isolates tested, including the metronidazole-resistant isolate, were 2.5 mg/mL. The kinetic growth curve showed that the filtrate samples were able to reduce the density of parasites to zero within 24 h of incubation, which was confirmed by microscopy. Both fungal filtrate samples exhibited no hemolytic activity, and the P. citrinum F40 filtrate sample showed low cytotoxicity against Vero cells. These data suggest that marine-associated fungi from the South Brazilian Coast may produce potential candidates for further investigation and possible use in the treatment of metronidazole-resistant trichomonosis.
PLOS ONE | 2015
Odelta dos Santos; Graziela Vargas Rigo; Amanda Piccoli Frasson; Alexandre José Macedo; Tiana Tasca
Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis.
Fems Microbiology Letters | 2016
Amanda Piccoli Frasson; Odelta dos Santos; Lúcia Collares Meirelles; Alexandre José Macedo; Tiana Tasca
Trichomonas vaginalis is a protozoan that parasitizes the human urogenital tract causing trichomoniasis, the most common non-viral sexually transmitted disease. The parasite has unique genomic characteristics such as a large genome size and expanded gene families. Ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) is an enzyme responsible for hydrolyzing nucleoside tri- and diphosphates and has already been biochemically characterized in T. vaginalis. Considering the important role of this enzyme in the production of extracellular adenosine for parasite uptake, we evaluated the gene expression of five putative NTPDases in T. vaginalis. We showed that all five putative TvNTPDase genes (TvNTPDase1-5) were expressed by both fresh clinical and long-term grown isolates. The amino acid alignment predicted the presence of the five crucial apyrase conserved regions, transmembrane domains, signal peptides, phosphorylation and catalytic sites. Moreover, a phylogenetic analysis showed that TvNTPDase sequences make up a clade with NTPDases intracellularly located. Biochemical NTPDase activity (ATP and ADP hydrolysis) is responsive to the serum-restrictive conditions and the gene expression of TvNTPDases was mostly increased, mainly TvNTPDase2 and TvNTPDase4, although there was not a clear pattern of expression among them. In summary, the present report demonstrates the gene expression patterns of predicted NTPDases in T. vaginalis.
Memorias Do Instituto Oswaldo Cruz | 2015
Muriel Primon-Barros; Graziela Vargas Rigo; Amanda Piccoli Frasson; Odelta dos Santos; Lisiane Smiderle; Silvana Almeida; Alexandre José Macedo; Tiana Tasca
Trichomonas vaginalis is a flagellate protozoan that parasitises the urogenital human tract and causes trichomoniasis. During the infection, the acquisition of nutrients, such as iron and purine and pyrimidine nucleosides, is essential for the survival of the parasite. The enzymes for purinergic signalling, including adenosine deaminase (ADA), which degrades adenosine to inosine, have been characterised in T. vaginalis. In the evaluation of the ADA profile in different T. vaginalis isolates treated with different iron sources or with limited iron availability, a decrease in activity and an increase in ADA gene expression after iron limitation by 2,2-bipyridyl and ferrozine chelators were observed. This supported the hypothesis that iron can modulate the activity of the enzymes involved in purinergic signalling. Under bovine serum limitation conditions, no significant differences were observed. The results obtained in this study allow for the assessment of important aspects of ADA and contribute to a better understanding of the purinergic system in T. vaginalis and the role of iron in establishing infection and parasite survival.
Parasitology Research | 2017
Odelta dos Santos; Graziela Vargas Rigo; Alexandre José Macedo; Tiana Tasca
The parasitism by Trichomonas vaginalis is complex and in part is mediated by cytoadherence accomplished via five surface proteins named adhesins and a glycoconjugate called lipophosphoglycan (TvLPG). In this study, we evaluated the ability of T. vaginalis isolates to adhere to cells, plastic (polystyrene microplates), intrauterine device (IUD), and vaginal ring. Of 32 T. vaginalis isolates, 4 (12.5%) were strong adherent. The T. vaginalis isolates TV-LACM6 and TV-LACM14 (strong polystyrene-adherent) were also able to adhere to IUD and vaginal ring. Following chemical treatments, results demonstrated that the T. vaginalis components, lipophosphoglycan, cytoskeletal proteins, and surface molecules, were involved in both adherence to polystyrene and cytoadherence. The gene expression level from four adhesion proteins was highest in trophozoites adhered to cells than trophozoites adhered to the abiotic surface (polystyrene microplate). Our data indicate the major involvement of TvLPG in adherence to polystyrene, and that adhesins are important for cytoadherence. Furthermore, to our knowledge, this is the first report showing the T. vaginalis adherence to contraceptive devices, reaffirming its importance as pathogen among women in reproductive age.
Parasitology Research | 2012
Amanda Piccoli Frasson; Odelta dos Santos; Mariana Duarte; Danielle da Silva Trentin; Raquel Brandt Giordani; Alexandre Gomes da Silva; Márcia Vanusa da Silva; Tiana Tasca; Alexandre José Macedo
Molecular and Biochemical Parasitology | 2016
Camila Braz Menezes; Juliano Durgante; Rafael R. de Oliveira; Victor Hugo J. M. dos Santos; Luiz F. Rodrigues; Solange Cristina Garcia; Odelta dos Santos; Tiana Tasca
Revista Eletrônica de Ciências Humanas, Saúde e Tecnologia | 2013
Bruna de Souza Costantin; Luciane Cristina Gelatti; Odelta dos Santos
Revista de Epidemiologia e Controle de Infecção | 2016
Débora da Luz Becker; Danielly Joani Bulle; Paula Lutjohann Rodrigues; Odelta dos Santos; Daiane Flores Dalla Lana; Alexandre Meneghello Fuentefria
Collaboration
Dive into the Odelta dos Santos's collaboration.
Alexandre Meneghello Fuentefria
Universidade Federal do Rio Grande do Sul
View shared research outputs