Odile Bain
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Odile Bain.
Parasites & Vectors | 2012
Domenico Otranto; Emanuele Brianti; Maria Stefania Latrofa; Giada Annoscia; Stefania Weigl; Riccardo Paolo Lia; Gabriella Gaglio; Ettore Napoli; Salvatore Giannetto; E. Papadopoulos; Guadalupe Miró; Filipe Dantas-Torres; Odile Bain
BackgroundThis study was aimed at investigating the distribution of a Cercopithifilaria sp. sensu Otranto et al., 2011 with dermal microfilariae recently identified in a dog from Sicily (Italy). A large epidemiological survey was conducted by examining skin samples (n = 917) and ticks (n = 890) collected from dogs at different time points in Italy, central Spain and eastern Greece.ResultsThe overall prevalence of Cercopithifilaria sp. in the sampled animal populations was 13.9% and 10.5% by microscopy of skin sediments and by PCR on skin samples, respectively. Up to 21.6% and 45.5% of dogs in Spain were positive by microscopical examination and by PCR. Cumulative incidence rates ranging from 7.7% to 13.9% were estimated in dogs from two sites in Italy. A low level of agreement between the two diagnostic tests (microscopical examination and PCR) was recorded in sites where samples were processed in parallel. Infestation rate as determined by tick dissection (from 5.2% to 16.7%) was higher than that detected by PCR (from 0% to 3.9%); tick infestation was significantly associated with Cercopithifilaria sp. infestation in dogs from two out of four sites. Developing larvae found in ticks were morphometrically studied and as many as 1469 larvae were found in a single tick.ConclusionsOur data suggest that, in addition to the most common species of filarioids known to infest dogs (i.e., Dirofilaria immitis, Dirofilaria repens and Acanthocheilonema reconditum), Cercopithifilaria sp. with dermal microfilariae should be considered due to its widespread distribution in southern Europe and high frequency in tick-exposed dogs.
Frontiers in Zoology | 2009
Emanuele Ferri; Michela Barbuto; Odile Bain; Andrea Galimberti; Shigehiko Uni; Ricardo Guerrero; Hubert Ferté; Claudio Bandi; Coralie Martin; Maurizio Casiraghi
BackgroundWe compared here the suitability and efficacy of traditional morphological approach and DNA barcoding to distinguish filarioid nematodes species (Nematoda, Spirurida). A reliable and rapid taxonomic identification of these parasites is the basis for a correct diagnosis of important and widespread parasitic diseases. The performance of DNA barcoding with different parameters was compared measuring the strength of correlation between morphological and molecular identification approaches. Molecular distance estimation was performed with two different mitochondrial markers (coxI and 12S rDNA) and different combinations of data handling were compared in order to provide a stronger tool for easy identification of filarioid worms.ResultsDNA barcoding and morphology based identification of filarioid nematodes revealed high coherence. Despite both coxI and 12S rDNA allow to reach high-quality performances, only coxI revealed to be manageable. Both alignment algorithm, gaps treatment, and the criteria used to define the threshold value were found to affect the performance of DNA barcoding with 12S rDNA marker. Using coxI and a defined level of nucleotide divergence to delimit species boundaries, DNA barcoding can also be used to infer potential new species.ConclusionAn integrated approach allows to reach a higher discrimination power. The results clearly show where DNA-based and morphological identifications are consistent, and where they are not. The coherence between DNA-based and morphological identification for almost all the species examined in our work is very strong. We propose DNA barcoding as a reliable, consistent, and democratic tool for species discrimination in routine identification of parasitic nematodes.
European Journal of Immunology | 2009
Matthew D. Taylor; Nienke van der Werf; Anjanette Harris; Andrea L. Graham; Odile Bain; Judith E. Allen; Rick M. Maizels
Human helminth infections are synonymous with impaired immune responsiveness indicating suppression of host immunity. Using a permissive murine model of filariasis, Litomosoides sigmodontis infection of inbred mice, we demonstrate rapid recruitment and increased in vivo proliferation of CD4+Foxp3+ Treg cells upon exposure to infective L3 larvae. Within 7 days post‐infection this resulted in an increased percentage of CD4+T cells at the infection site expressing Foxp3. Antibody‐mediated depletion of CD25+ cells prior to infection to remove pre‐existing ‘natural’ CD4+CD25+Foxp3+ Treg cells, while not affecting initial larval establishment, significantly reduced the number of adult parasites recovered 60 days post‐infection. Anti‐CD25 pre‐treatment also impaired the fecundity of the surviving female parasites, which had reduced numbers of healthy eggs and microfilaria within their uteri, translating to a reduced level of blood microfilaraemia. Enhanced parasite killing was associated with augmented in vitro production of antigen‐specific IL‐4, IL‐5, IL‐13 and IL‐10. Thus, upon infection filarial larvae rapidly provoke a CD4+Foxp3+ Treg‐cell response, biasing the initial CD4+ T‐cell response towards a regulatory phenotype. These CD4+Foxp3+ Treg cells are predominantly recruited from the ‘natural’ regulatory pool and act to inhibit protective immunity over the full course of infection.
Journal of Immunology | 2007
Matthew D. Taylor; Anjanette Harris; Simon A. Babayan; Odile Bain; Abigail Culshaw; Judith E. Allen; Rick M. Maizels
The T cell coinhibitory receptor CTLA-4 has been implicated in the down-regulation of T cell function that is a quintessential feature of chronic human filarial infections. In a laboratory model of filariasis, Litomosoides sigmodontis infection of susceptible BALB/c mice, we have previously shown that susceptibility is linked both to a CD4+CD25+ regulatory T (Treg) cell response, and to the development of hyporesponsive CD4+ T cells at the infection site, the pleural cavity. We now provide evidence that L. sigmodontis infection drives the proliferation and activation of CD4+Foxp3+ Treg cells in vivo, demonstrated by increased uptake of BrdU and increased expression of CTLA-4, Foxp3, GITR, and CD25 compared with naive controls. The greatest increases in CTLA-4 expression were, however, seen in the CD4+Foxp3− effector T cell population which contained 78% of all CD4+CTLA-4+ cells in the pleural cavity. Depletion of CD25+ cells from the pleural CD4+ T cell population did not increase their Ag-specific proliferative response in vitro, suggesting that their hyporesponsive phenotype is not directly mediated by CD4+CD25+ Treg cells. Once infection had established, killing of adult parasites could be enhanced by neutralization of CTLA-4 in vivo, but only if performed in combination with the depletion of CD25+ Treg cells. This work suggests that during filarial infection CTLA-4 coinhibition and CD4+CD25+ Treg cells form complementary components of immune regulation that inhibit protective immunity in vivo.
PLOS ONE | 2011
Emanuele Ferri; Odile Bain; Michela Barbuto; Coralie Martin; Nathan Lo; Shigehiko Uni; Frédéric Landmann; Sara G. Baccei; Ricardo Guerrero; Sueli de Souza Lima; Claudio Bandi; Samuel Wanji; Moustapha Diagne; Maurizio Casiraghi
Background Wolbachia are intriguing symbiotic endobacteria with a peculiar host range that includes arthropods and a single nematode family, the Onchocercidae encompassing agents of filariases. This raises the question of the origin of infection in filariae. Wolbachia infect the female germline and the hypodermis. Some evidences lead to the theory that Wolbachia act as mutualist and coevolved with filariae from one infection event: their removal sterilizes female filariae; all the specimens of a positive species are infected; Wolbachia are vertically inherited; a few species lost the symbiont. However, most data on Wolbachia and filaria relationships derive from studies on few species of Onchocercinae and Dirofilariinae, from mammals. Methodology/Principal Findings We investigated the Wolbachia distribution testing 35 filarial species, including 28 species and 7 genera and/or subgenera newly screened, using PCR, immunohistochemical staining, whole mount fluorescent analysis, and cocladogenesis analysis. (i) Among the newly screened Onchocercinae from mammals eight species harbour Wolbachia but for some of them, bacteria are absent in the hypodermis, or in variable density. (ii) Wolbachia are not detected in the pathological model Monanema martini and in 8, upon 9, species of Cercopithifilaria. (iii) Supergroup F Wolbachia is identified in two newly screened Mansonella species and in Cercopithifilaria japonica. (iv) Type F Wolbachia infect the intestinal cells and somatic female genital tract. (v) Among Oswaldofilariinae, Waltonellinae and Splendidofilariinae, from saurian, anuran and bird respectively, Wolbachia are not detected. Conclusions/Significance The absence of Wolbachia in 63% of onchocercids, notably in the ancestral Oswaldofilariinae estimated 140 mya old, the diverse tissues or specimens distribution, and a recent lateral transfer in supergroup F Wolbachia, modify the current view on the role and evolution of the endosymbiont and their hosts. Further genomic analyses on some of the newly sampled species are welcomed to decipher the open questions.
Medical Microbiology and Immunology | 2003
Lars Volkmann; Odile Bain; Michael Saeftel; Sabine Specht; Kerstin Fischer; Frank Brombacher; Klaus I. Matthaei; Achim Hoerauf
Abstract. We compared the impact of IL-4 and IL-5 deficiency during the fully permissive infection of BALB/c mice with the rodent filaria Litomosoides sigmodontis. IL-5, in contrast to IL-4, is crucial for the containment of adult worms during short- and long-term infections. IL-5 KO mice allowed development of more larvae into adult worms and showed up to 200 times more adult worms persisting during chronic infection (day 60 until 200 post-infection). This increased persistence was accompanied by a reduction in inflammatory nodules around adult filariae. In contrast, adult worm survival and nodule formation did not differ between BALB/c wild-type mice and BALB/c IL-4 KO or BALB/c IL-4 receptor (IL-4R) α-chain KO mice. In both IL-4 and IL-5 KO mice microfilaraemia was greatly enhanced (160-fold) and prolonged compared to wild-type mice. This extent of susceptibility to microfilariae required the presence of adult worms in a full infection cycle since upon intraperitoneal injection of microfilariae alone they were removed from BALB/c, BALB/c IL-4 KO and BALB/c IL-4R α-chain KO mice with equivalent kinetics, and since microfilarial survival was only slightly increased in IL-5 KO mice (factor of 5 vs. factor of 160 in full infection). In conclusion, IL-4 and IL-5 dependent effector pathways operate against different stages of filarial worms, and IL-5 has a greater impact on parasite containment than IL-4.
Filaria Journal | 2003
Dietrich W. Büttner; Samuel Wanji; Chiara Bazzocchi; Odile Bain; Peter Fischer
Background Many filarial nematodes harbour Wolbachia endobacteria. These endobacteria are transmitted vertically from one generation to the next. In several filarial species that have been studied to date they are obligatory symbionts of their hosts. Elimination of the endobacteria by antibiotics interrupts the embryogenesis and hence the production of microfilariae. The medical implication of this being that the use of doxycycline for the treatment of human onchocerciasis and bancroftian filariasis leads to elimination of the Wolbachia and hence sterilisation of the female worms. Wolbachia play a role in the immunopathology of patients and may contribute to side effects seen after antifilarial chemotherapy. In several studies Wolbachia were not observed in Loa loa. Since these results have been doubted, and because of the medical significance, several independent methods were applied to search for Wolbachia in L. loa. Methods Loa loa and Onchocerca volvulus were studied by electron microscopy, histology with silver staining, and immunohistology using antibodies against WSP, Wolbachia aspartate aminotransferase, and heat shock protein 60. The results achieved with L. loa and O. volvulus were compared. Searching for Wolbachia, genes were amplified by PCR coding for the bacterial 16S rDNA, the FTSZ cell division protein, and WSP. Results No Wolbachia endobacteria were discovered by immunohistology in 13 male and 14 female L. loa worms and in numerous L. loa microfilariae. In contrast, endobacteria were found in large numbers in O. volvulus and 14 other filaria species. No intracellular bacteria were seen in electron micrographs of oocytes and young morulae of L. loa in contrast to O. volvulus. In agreement with these results, Wolbachia DNA was not detected by PCR in three male and six female L. loa worms and in two microfilariae samples of L. loa. Conclusions Loa loa do not harbour obligatory symbiotic Wolbachia endobacteria in essential numbers to enable their efficient vertical transmission or to play a role in production of microfilariae. Exclusively, the filariae cause the immunopathology of loiasis is patients and the adverse side effects after antifilarial chemotherapy. Doxycycline cannot be used to cure loiais but it probably does not represent a risk for L. loa patients when administered to patients with co-infections of onchocerciasis.
PLOS Neglected Tropical Diseases | 2008
Judith E. Allen; Ohene Adjei; Odile Bain; Achim Hoerauf; Wolfgang Hoffmann; Benjamin L. Makepeace; H. Schulz-Key; Vincent N. Tanya; Alexander J. Trees; Samuel Wanji; David W. Taylor
River blindness is a seriously debilitating disease caused by the filarial parasite Onchocerca volvulus, which infects millions in Africa as well as in South and Central America. Research has been hampered by a lack of good animal models, as the parasite can only develop fully in humans and some primates. This review highlights the development of two animal model systems that have allowed significant advances in recent years and hold promise for the future. Experimental findings with Litomosoides sigmodontis in mice and Onchocerca ochengi in cattle are placed in the context of how these models can advance our ability to control the human disease.
Parasitology Today | 2000
Wolfgang Hoffmann; G. Petit; H. Schulz-Key; David W. Taylor; Odile Bain; Laetitia Le Goff
Onchocerciasis and lymphatic filariasis (LF) are major causes of severe morbidity and considerable socio-economic problems throughout the tropics. Vector control and mass chemotherapy have helped to control these infections in some regions, but the temporary success of such measures argues strongly for the development of vaccines. Success in such a venture will require detailed knowledge of protective immune responses in conjunction with the identification of target antigens. By comparison with other important parasitic infections, such as schistosomiasis and leishmaniasis, work on the development of vaccines for onchocerciasis and LF has been constrained because of the difficulties of producing cyclical and patent filarial infection in laboratory mice. Wolfgang Hoffmann and colleagues here outline the opportunities presented by the rodent filaria Litomosoides sigmodontis for filarial research.
Medical Microbiology and Immunology | 2000
Coralie Martin; Khaled M. Al-Qaoud; Marie-Noëlle Ungeheuer; Kerstin Paehle; Phat N. Vuong; Odile Bain; Bernhard Fleischer; Achim Hoerauf
Abstract The pathways conferring immunity to human filariases are not well known, in part because human-pathogenic filariae do not complete a full life cycle in laboratory mice. We have used the only fully permissive infection of mice with filariae, i.e., infection of BALB/c mice with the rodent filarial nematode Litomosoides sigmodontis. Our previous results showed that worm development is inversely correlated with Th2 cytokine production and eosinophilia. The scope of the present study was to directly elucidate the role of interleukin-5 (IL-5) and eosinophils in controlling the development of L. sigmodontis after vaccination and in primary infection. BALB/c mice immunized with irradiated third-stage larvae (L3) were confirmed to have elevated IL-5 levels as well as high subcutaneous eosinophilia and to attack and reduce incoming larvae within the first 2 days, resulting in 70% reduction of worm load. Treatment of vaccinated mice with anti-IL-5 antibody (TRFK-5) suppressed both blood and tissue eosinophilia and completely abolished protection. This demonstrates, for the first time in a fully permissive filarial infection, that IL-5 is essential for protection induced by irradiated L3 larvae. In contrast, in primary-infected mice, anti-IL-5 treatment did not modify filarial infection within the 1st month, most likely because during primary infection IL-5-dependent mechanisms such as subcutaneous eosinophilia are induced too late to disturb worm establishment. However, there is a role for IL-5 late in primary infection where neutrophil-dependent worm encapsulation is also under the control of IL-5.