Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Odile Berge is active.

Publication


Featured researches published by Odile Berge.


The ISME Journal | 2008

Plant host habitat and root exudates shape soil bacterial community structure

Feth el Zahar Haichar; Christine Marol; Odile Berge; J. Ignacio Rangel-Castro; James I. Prosser; Jérôme Balesdent; Thierry Heulin; Wafa Achouak

The rhizosphere is active and dynamic in which newly generated carbon, derived from root exudates, and ancient carbon, in soil organic matter (SOM), are available for microbial growth. Stable isotope probing (SIP) was used to determine bacterial communities assimilating each carbon source in the rhizosphere of four plant species. Wheat, maize, rape and barrel clover (Medicago truncatula) were grown separately in the same soil under 13CO2 (99% of atom 13C) and DNA extracted from rhizosphere soil was fractionated by isopycnic centrifugation. Bacteria-assimilating root exudates were characterized by denaturing gradient gel electrophoresis (DGGE) analysis of 13C-DNA and root DNA, whereas those assimilating SOM were identified from 12C-DNA. Plant species root exudates significantly shaped rhizosphere bacterial community structure. Bacteria related to Sphingobacteriales and Myxococcus assimilated root exudates in colonizing roots of all four plants, whwereas bacteria related to Sphingomonadales utilized both carbon sources, and were identified in light, heavy and root compartment DNA. Sphingomonadales were specific to monocotyledons, whereas bacteria related to Enterobacter and Rhizobiales colonized all compartments of all four plants, used both fresh and ancient carbon and were considered as generalists. There was also evidence for an indirect important impact of root exudates, through stimulation of SOM assimilation by a diverse bacterial community.


Biology and Fertility of Soils | 2004

Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress

Muhammad Yasin Ashraf; Shahida Hasnain; Odile Berge; T. Mahmood

A pot experiment was conducted to elucidate the effects of inoculating five exopolysaccharide- (EPS-) producing bacterial strains on the dry matter yield and the uptake of K+, Na+, and Ca2+ by wheat seedlings grown in a moderately saline soil. The bacteria were isolated from the rhizosphere soil (RS) of wheat grown in a salt-affected soil and included Aeromonas hydrophila/caviae (strain MAS-765), Bacillus insolitus (strain MAS17), and Bacillus sp. (strains MAS617, MAS620 and MAS820). The inoculation substantially increased the dry matter yield of roots (149–527% increase) and shoots (85–281% increase), and the mass of RS (176–790% increase). All the strains, except MAS617, also increased the RS mass/root mass ratio as well as the population density of EPS bacteria on the rhizoplane, and both these parameters were significantly correlated with the content of water-insoluble saccharides in the RS. Inoculation restricted Na+ uptake by roots, which was not attributable to the binding of Na+ by the RS, or to the ameliorative effects of Ca2+ under salinity. The decreased Na+ uptake by roots of inoculated than uninoculated plants was probably caused by a reduced passive (apoplasmic) flow of Na+ into the stele due to the higher proportion of the root zones covered with soil sheaths in inoculated treatments. Among the strains tested, MAS820 was the most efficient in all respects, whereas MAS617 was the least effective. Results suggested that inoculating selected EPS-producing bacteria could serve as a useful tool for alleviating salinity stress in salt-sensitive plants.


International Journal of Systematic and Evolutionary Microbiology | 2002

Paenibacillus graminis sp. nov. and Paenibacillus odorifer sp. nov., isolated from plant roots, soil and food.

Odile Berge; Marie-Hélène Guinebretière; Wafa Achouak; Philippe Normand; Thierry Heulin

Sixteen gram-positive endospore-forming bacteria previously isolated from soil, plant rhizospheres, plant roots and pasteurized pureed vegetables were studied to determine their taxonomic positions. The isolates were formerly identified as Bacillus circulans based on their biochemical characters using API galleries. Two of these strains, RSA19T and TOD45T, were recently assigned to the genus Paenibacillus based on phylogenetic analysis of their 16S rRNA (rrs) gene sequence. In the present work, the sixteen isolates were assigned to two genomospecies using DNA-DNA hybridization, in agreement with rrs gene sequence analysis. These genomospecies can also be differentiated on the basis of their cultural and biochemical characters into two novel species, for which the names Paenibacillus graminis sp. nov. (type strain RSA19T = ATCC BAA-95T = LMG 19080T) and Paenibacillus odorifer sp. nov. (type strain TOD45T = ATCC BAA-93T = LMG 19079T) are proposed.


International Journal of Systematic and Evolutionary Microbiology | 2000

Taxonomic characterization of Ochrobactrum sp. isolates from soil samples and wheat roots, and description of Ochrobactrum tritici sp. nov. and Ochrobactrum grignonense sp. nov

Michael Lebuhn; Wafa Achouak; Michael Schloter; Odile Berge; Harald Meier; Mohamed Barakat; Anton Hartmann; Thierry Heulin

A large collection of bacterial strains, immunotrapped from soil and from the wheat rhizoplane, was subjected to polyphasic taxonomy by examining various pheno- and genotypic parameters. Strains were grouped on (inter) repetitive extragenic palindromic DNA (REP) PCR profiles at the intraspecies level. Pheno- and genotypic characters were assessed for representatives from 13 different REP groups. Strains of nine REP groups constituting two physiological BIOLOG clusters fell in the coherent DNA-DNA reassociation group of Ochrobactrum anthropi. Strains of two REP groups constituting a separate BIOLOG cluster fell in the coherent DNA-DNA reassociation group of Ochrobactrum intermedium. Additional phenotypic characters differentiating O. anthropi and O. intermedium were found. REP group K strains constituted a different BIOLOG cluster, a separate DNA-DNA reassociation group and a distinct phylogenetic lineage in 165 rDNA homology analysis, indicating that REP group K strains represent a new species. Diagnostic phenotypic characters were found. Closest relatives were Ochrobactrum species. The name Ochrobactrum grignonense sp. nov. is proposed (type strain OgA9aT = LMG 18954T = DSM 13338T). REP group J strains again constituted a different BIOLOG cluster, a separate DNA-DNA reassociation group and showed, as a biological particularity, a strict preference for the rhizoplane as habitat. Diagnostic phenotypic characters were found. This indicated that REP group J strains represent a further new species, although phylogenetic analyses using 16S rDNA homology were not able to separate the cluster of REP group J sequences significantly from 16S rDNA sequences of Ochrobactrum anthropi. The name Ochrobactrum tritici sp. nov. is proposed (type strain SCII24T = LMG 18957T = DSM 13340T).


Microbiology and Molecular Biology Reviews | 2002

Microbial Biodiversity: Approaches to Experimental Design and Hypothesis Testing in Primary Scientific Literature from 1975 to 1999

Cindy E. Morris; Marc Bardin; Odile Berge; Pascale Frey-Klett; Nathalie Fromin; Hélène Girardin; Marie-Hélène Guinebretière; Philippe Lebaron; Jean M. Thiéry; Marc Troussellier

SUMMARY Research interest in microbial biodiversity over the past 25 years has increased markedly as microbiologists have become interested in the significance of biodiversity for ecological processes and as the industrial, medical, and agricultural applications of this diversity have evolved. One major challenge for studies of microbial habitats is how to account for the diversity of extremely large and heterogeneous populations with samples that represent only a very small fraction of these populations. This review presents an analysis of the way in which the field of microbial biodiversity has exploited sampling, experimental design, and the process of hypothesis testing to meet this challenge. This review is based on a systematic analysis of 753 publications randomly sampled from the primary scientific literature from 1975 to 1999 concerning the microbial biodiversity of eight habitats related to water, soil, plants, and food. These publications illustrate a dominant and growing interest in questions concerning the effect of specific environmental factors on microbial biodiversity, the spatial and temporal heterogeneity of this biodiversity, and quantitative measures of population structure for most of the habitats covered here. Nevertheless, our analysis reveals that descriptions of sampling strategies or other information concerning the representativeness of the sample are often missing from publications, that there is very limited use of statistical tests of hypotheses, and that only a very few publications report the results of multiple independent tests of hypotheses. Examples are cited of different approaches and constraints to experimental design and hypothesis testing in studies of microbial biodiversity. To prompt a more rigorous approach to unambiguous evaluation of the impact of microbial biodiversity on ecological processes, we present guidelines for reporting information about experimental design, sampling strategies, and analyses of results in publications concerning microbial biodiversity.


The ISME Journal | 2009

Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots.

Mélanie Bressan; Marie-Anne Roncato; Floriant Bellvert; Gilles Comte; Feth el Zahar Haichar; Wafa Achouak; Odile Berge

A specificity of Brassicaceous plants is the production of sulphur secondary metabolites called glucosinolates that can be hydrolysed into glucose and biocidal products. Among them, isothiocyanates are toxic to a wide range of microorganisms and particularly soil-borne pathogens. The aim of this study was to investigate the role of glucosinolates and their breakdown products as a factor of selection on rhizosphere microbial community associated with living Brassicaceae. We used a DNA-stable isotope probing approach to focus on the active microbial populations involved in root exudates degradation in rhizosphere. A transgenic Arabidopsis thaliana line producing an exogenous glucosinolate and the associated wild-type plant associated were grown under an enriched 13CO2 atmosphere in natural soil. DNA from the rhizospheric soil was separated by density gradient centrifugation. Bacterial (Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria and Acidobacteria), Archaea and fungal community structures were analysed by DGGE fingerprints of amplified 16S and 18S rRNA gene sequences. Specific populations were characterized by sequencing DGGE fragments. Roots of the transgenic plant line presented an altered profile of glucosinolates and other minor additional modifications. These modifications significantly influenced microbial community on roots and active populations in the rhizosphere. Alphaproteobacteria, particularly Rhizobiaceae, and fungal communities were mainly impacted by these Brassicaceous metabolites, in both structure and composition. Our results showed that even a minor modification in plant root could have important repercussions for soil microbial communities.


International Journal of Systematic and Evolutionary Microbiology | 2009

Mesorhizobium metallidurans sp. nov., a metal-resistant symbiont of Anthyllis vulneraria growing on metallicolous soil in Languedoc, France.

Céline Vidal; Clémence Chantreuil; Odile Berge; Lucette Mauré; José Escarré; Gilles Béna; Brigitte Brunel; Jean-Claude Cleyet-Marel

A polyphasic taxonomic approach was used to characterize 31 rhizobial isolates obtained from Anthyllis vulneraria, a metallicolous legume species, growing close to a zinc mine in the south of France (Saint Laurent le Minier). Comparative analysis of nearly full-length 16S rRNA gene sequences showed that these Gram-negative bacteria belonged to the genus Mesorhizobium and that they were related most closely to Mesorhizobium tianshanense ORS 2640(T). The phylogenetic relationships of these isolates with other Mesorhizobium species were confirmed by sequencing and analysis of the recA and atpD genes, which were used as alternative chromosomal markers. These novel mesorhizobial strains tolerated high concentrations of heavy metals: 16-32 mM Zn and 0.3-0.5 mM Cd. DNA-DNA hybridizations revealed >73 % relatedness between the strains isolated from A. vulneraria, but only 19-33 % relatedness between these and the type strains of M. tianshanense and Mesorhizobium mediterraneum. These results, together with other phenotypic characteristics, support the conclusion that these isolates represent a single, novel species of the genus Mesorhizobium, for which the name Mesorhizobium metallidurans sp. nov. is proposed. The type strain is STM 2683(T) (=CFBP 7147(T)=LMG 24485(T)).


Applied and Environmental Microbiology | 2001

Identification of Bacteria in Pasteurized Zucchini Purées Stored at Different Temperatures and Comparison with Those Found in Other Pasteurized Vegetable Purées

Marie-Hélène Guinebretière; Odile Berge; Philippe Normand; Cindy E. Morris; Frédéric Carlin; Christophe Nguyen-The

ABSTRACT One hundred nineteen isolates from a commercial zucchini purée stored at 4, 10, and 20 to 25°C were fingerprinted using repetitive sequence-based PCR (REP-PCR) and classified into 35 REP types. One representative isolate of each REP type was subsequently identified by API50CHB/20E profile and partial rrs gene sequence analysis. Nine REP types were misidentified by the API system. Strains were misidentified as being in the Bacillus circulans (group 2) API taxon or in taxa with a low number of positive API characters such as Brevibacillus brevis. A phylogenetic analysis pointed to one new species ofBacillus and three new species ofPaenibacillus among the misidentified REP types. Bacterial components in zucchini purée were compared phenotypically with those obtained in previous work on broccoli, carrot, leek, potato, and split pea purées, based on simple matching coefficient and unweighted pair group method with averages cluster analysis. Out of 254 strains, 69 strains previously identified as B. circulans (group 2) or B. circulans/B. macerans/B.polymyxa were assigned to a newPaenibacillus taxon phylogenetically related toP. azotofixans. Storage conditions at 4°C favored the development of “B. macroides/B. maroccanus” and Paenibacillus spp. in zucchini purées andPaenibacillus spp. in other purées. Storage conditions at 20 to 25°C favored the development of B. subtilis group (B. licheniformis and B. subtilis) and B. cereus group strains. At 10°C, Paenibacillus spp. were always present at high frequencies, whereas the occurrence of B. macroides/B. maroccanus (in zucchini purées), B. cereus, and B. pumilus varied with the experiment.


Biometals | 1995

Ornibactin production and transport properties in strains of Burkholderia vietnamiensis and Burkholderia cepacia (formerly Pseudomonas cepacia)

Jean-Marie Meyer; Van Trân Van; Alain Stintzi; Odile Berge; Günther Winkelmann

Several strains of Burkholderia vietnamiensis, isolated from the rhizosphere of rice plants, and four strains formerly known as Pseudomonas cepacia including two collection strains and two clinical isolates were compared for siderophore production and iron uptake. The B. vietnamiensis (TVV strains) as well as the B. cepacia strains (ATCC 25416 and ATCC 17759) and the clinical isolates K132 and LMG 6999 were all found to produce ornibactins under iron starvation. The two ATCC strains of B. cepacia additionally produced the previously described siderophores, pyochelin and cepabactin. Analysis of the ratio of isolated ornibactins (C4, C6 and C8) by HPLC revealed nearly identical profiles. Supplementation of the production medium with ornithine (20 mm) resulted in a 2.5-fold increase in ornibactin synthesis. Ornibactin-mediated iron uptake was independent of the length of the acyl side chain and was observed with all strains of B. vietnamiensis and B. cepacia, but was absent with strains of Pseudomonas aeruginosa, Pseudomonas fluorescens and Pseudomonas stutzeri, known to produce pyoverdines or desferriferrioxamines as siderophores. These results suggest that ornibactin production is a common feature of all Burkholderia strains and that these strains develop an ornibactin-specific iron transport system which is distinct from the pyoverdine-specific transport in Pseudomonas strains.


Environmental Microbiology | 2008

The exopolysaccharide of Rhizobium sp. YAS34 is not necessary for biofilm formation on Arabidopsis thaliana and Brassica napus roots but contributes to root colonization

Catherine Santaella; Mathieu Schué; Odile Berge; Thierry Heulin; Wafa Achouak

Microbial exopolysaccharides (EPSs) play key roles in plant–microbe interactions, such as biofilm formation on plant roots and legume nodulation by rhizobia. Here, we focused on the function of an EPS produced by Rhizobium sp. YAS34 in the colonization and biofilm formation on non-legume plant roots (Arabidopsis thaliana and Brassica napus). Using random transposon mutagenesis, we isolated an EPS-deficient mutant of strain YAS34 impaired in a glycosyltransferase gene (gta). Wild type and mutant strains were tagged with a plasmid-born GFP and, for the first time, the EPS produced by the wild-type strain was seen in the rhizosphere using selective carbohydrate probing with a fluorescent lectin and confocal laser-scanning microscopy. We show for the fist time that Rhizobium forms biofilms on roots of non-legumes, independently of the EPS synthesis. When produced by strain YAS34 wild type, EPS is targeted at specific parts of the plant root system. Nutrient fluctuations, root exudates and bacterial growth phase can account for such a production pattern. The EPS synthesis in Rhizobium sp. YAS34 is not essential for biofilm formation on roots, but is critical to colonization of the basal part of the root system and increasing the stability of root-adhering soil. Thus, in Rhizobium sp. YAS34 and non-legume interactions, microbial EPS is implicated in root–soil interface, root colonization, but not in biofilm formation.

Collaboration


Dive into the Odile Berge's collaboration.

Top Co-Authors

Avatar

Thierry Heulin

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Wafa Achouak

European Automobile Manufacturers Association

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jérôme Balesdent

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Marie-Hélène Guinebretière

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Alain Heyraud

Joseph Fourier University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christophe Mougel

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Cindy E. Morris

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge