Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Odile Eisenstein is active.

Publication


Featured researches published by Odile Eisenstein.


Chemical Reviews | 2010

C—H Bond Activation in Transition Metal Species from a Computational Perspective

David Balcells; Eric Clot; Odile Eisenstein

ion step. The reactivity of pMMO has been also explored by Chan,525 by means of DFT calculations on small models of Figure 116. Nonradical mechanism proposed in the Yoshizawa model of sMMO. Figure 117. Mononuclear and dinuclear models of the copper active sites of pMMO. CsH Bond Activation in Transition Metal Species Chemical Reviews, 2010, Vol. 110, No. 2 813


Journal of the American Chemical Society | 2009

Highly active and robust Cp* iridium complexes for catalytic water oxidation.

Jonathan F. Hull; David Balcells; James D. Blakemore; Christopher D. Incarvito; Odile Eisenstein; Gary W. Brudvig; Robert H. Crabtree

A series of Cp*Ir catalysts are the most active known by over an order of magnitude for water oxidation with Ce(IV). DFT calculations support a Cp*Ir=O complex as an active species.


Journal of the American Chemical Society | 2010

Half-Sandwich Iridium Complexes for Homogeneous Water-Oxidation Catalysis

James D. Blakemore; Nathan D. Schley; David Balcells; Jonathan F. Hull; Gerard Olack; Christopher D. Incarvito; Odile Eisenstein; Gary W. Brudvig; Robert H. Crabtree

Iridium half-sandwich complexes of the types Cp*Ir(N-C)X, [Cp*Ir(N-N)X]X, and [CpIr(N-N)X]X are catalyst precursors for the homogeneous oxidation of water to dioxygen. Kinetic studies with cerium(IV) ammonium nitrate as primary oxidant show that oxygen evolution is rapid and continues over many hours. In addition, [Cp*Ir(H(2)O)(3)]SO(4) and [(Cp*Ir)(2)(μ-OH)(3)]OH can show even higher turnover frequencies (up to 20 min(-1) at pH 0.89). Aqueous electrochemical studies on the cationic complexes having chelate ligands show catalytic oxidation at pH > 7; conversely, at low pH, there are no oxidation waves up to 1.5 V vs NHE for the complexes. H(2)(18)O isotope incorporation studies demonstrate that water is the source of oxygen atoms during cerium(IV)-driven catalysis. DFT calculations and kinetic experiments, including kinetic-isotope-effect studies, suggest a mechanism for homogeneous iridium-catalyzed water oxidation and contribute to the determination of the rate-determining step. The kinetic experiments also help distinguish the active homogeneous catalyst from heterogeneous nanoparticulate iridium dioxide.


Accounts of Chemical Research | 2011

C-F and C-H bond activation of fluorobenzenes and fluoropyridines at transition metal centers: How fluorine tips the scales

Eric Clot; Odile Eisenstein; Naseralla A. Jasim; Stuart A. Macgregor; John E. McGrady; Robin N. Perutz

In this Account, we describe the transition metal-mediated cleavage of C-F and C-H bonds in fluoroaromatic and fluoroheteroaromatic molecules. The simplest reactions of perfluoroarenes result in C-F oxida tive addition, but C-H activation competes with C-F activation for partially fluorinated molecules. We first consider the reactivity of the fluoroaromatics toward nickel and platinum complexes, but extend to rhenium and rhodium where they give special insight. Sections on spectroscopy and molecular structure are followed by discussions of energetics and mechanism that incorporate experimental and computational results. We highlight special characteristics of the metal-fluorine bond and the influence of the fluorine substituents on energetics and mechanism. Fluoroaromatics reacting at an ML(2) center initially yield η(2)-arene complexes, followed usually by oxidative addition to generate MF(Ar(F))(L)(2) or MH(Ar(F))(L)(2) (M is Ni, Pd, or Pt; L is trialkylphosphine). The outcome of competition between C-F and C-H bond activation is strongly metal dependent and regioselective. When C-H bonds of fluoroaromatics are activated, there is a preference for the remaining C-F bonds to lie ortho to the metal. An unusual feature of metal-fluorine bonds is their response to replacement of nickel by platinum. The Pt-F bonds are weaker than their nickel counterparts; the opposite is true for M-H bonds. Metal-fluorine bonds are sufficiently polar to form M-F···H-X hydrogen bonds and M-F···I-C(6)F(5) halogen bonds. In the competition between C-F and C-H activation, the thermodynamic product is always the metal fluoride, but marked differences emerge between metals in the energetics of C-H activation. In metal-fluoroaryl bonds, ortho-fluorine substituents generally control regioselectivity and make C-H activation more energetically favorable. The role of fluorine substituents in directing C-H activation is traced to their effect on bond energies. Correlations between M-C and H-C bond energies demonstrate that M-C bond energies increase far more on ortho-fluorine substitution than do H-C bonds. Conventional oxidative addition reactions involve a three-center triangular transition state between the carbon, metal, and X, where X is hydrogen or fluorine, but M(d)-F(2p) repulsion raises the activation energies when X is fluorine. Platinum complexes exhibit an alternative set of reactions involving rearrangement of the phosphine and the fluoroaromatics to a metal(alkyl)(fluorophosphine), M(R)(Ar(F))(PR(3))(PR(2)F). In these phosphine-assisted C-F activation reactions, the phosphine is no spectator but rather is intimately involved as a fluorine acceptor. Addition of the C-F bond across the M-PR(3) bond leads to a metallophosphorane four-center transition state; subsequent transfer of the R group to the metal generates the fluorophosphine product. We find evidence that a phosphine-assisted pathway may even be significant in some apparently simple oxidative addition reactions. While transition metal catalysis has revolutionized hydrocarbon chemistry, its impact on fluorocarbon chemistry has been more limited. Recent developments have changed the outlook as catalytic reactions involving C-F or C-H bond activation of fluorocarbons have emerged. The principles established here have several implications for catalysis, including the regioselectivity of C-H activation and the unfavorable energetics of C-F reductive elimination. Palladium-catalyzed C-H arylation is analyzed to illustrate how ortho-fluorine substituents influence thermodynamics, kinetics, and regioselectivity.


Journal of the American Chemical Society | 2011

Iridium-Catalyzed Hydrogenation of N-Heterocyclic Compounds under Mild Conditions by an Outer-Sphere Pathway

Graham E. Dobereiner; Ainara Nova; Nathan D. Schley; Nilay Hazari; Scott J. Miller; Odile Eisenstein; Robert H. Crabtree

A new homogeneous iridium catalyst gives hydrogenation of quinolines under unprecedentedly mild conditions-as low as 1 atm of H(2) and 25 °C. We report air- and moisture-stable iridium(I) NHC catalyst precursors that are active for reduction of a wide variety of quinolines having functionalities at the 2-, 6-, and 8- positions. A combined experimental and theoretical study has elucidated the mechanism of this reaction. DFT studies on a model Ir complex show that a conventional inner-sphere mechanism is disfavored relative to an unusual stepwise outer-sphere mechanism involving sequential proton and hydride transfer. All intermediates in this proposed mechanism have been isolated or spectroscopically characterized, including two new iridium(III) hydrides and a notable cationic iridium(III) dihydrogen dihydride complex. DFT calculations on full systems establish the coordination geometry of these iridium hydrides, while stoichiometric and catalytic experiments with the isolated complexes provide evidence for the mechanistic proposal. The proposed mechanism explains why the catalytic reaction is slower for unhindered substrates and why small changes in the ligand set drastically alter catalyst activity.


Journal of the American Chemical Society | 2009

Exceptional sensitivity of metal-aryl bond energies to ortho-fluorine substituents: influence of the metal, the coordination sphere, and the spectator ligands on M-C/H-C bond energy correlations.

Eric Clot; Claire Mégret; Odile Eisenstein; Robin N. Perutz

DFT calculations are reported of the energetics of C-H oxidative addition of benzene and fluorinated benzenes, Ar(F)H (Ar(F) = C(6)F(n)H(5-n), n = 0-5) at ZrCp(2) (Cp = eta(5)-C(5)H(5)), TaCp(2)H, TaCp(2)Cl, WCp(2), ReCp(CO)(2), ReCp(CO)(PH(3)), ReCp(PH(3))(2), RhCp(PH(3)), RhCp(CO), IrCp(PH(3)), IrCp(CO), Ni(H(2)PCH(2)CH(2)PH(2)), Pt(H(2)PCH(2)CH(2)PH(2)). The change in M-C bond energy of the products fits a linear function of the number of fluorine substituents, with different coefficients corresponding to ortho-, meta-, and para-fluorine. The values of the ortho-coefficient range from 20 to 32 kJ mol(-1), greatly exceeding the values for the meta- and para-coefficients (2.0-4.5 kJ mol(-1)). Similarly, the H-C bond energies of Ar(F)H yield ortho- and para-coefficients of 10.4 and 3.4 kJ mol(-1), respectively, and a negligible meta-coefficient. These results indicate a large increase in the M-C bond energy with ortho-fluorine substitution on the aryl ring. Plots of D(M-C) vs D(H-C) yield slopes R(M-C/H-C) that vary from 1.93 to 3.05 with metal fragment, all in excess of values of 1.1-1.3 reported with other hydrocarbyl groups. Replacement of PH(3) by CO decreases R(M-C/H-C) significantly. For a given ligand set and metals in the same group of the periodic table, the value of R(M-C/H-C) does not increase with the strength of the M-C bond. Calculations of the charge on the aryl ring show that variations in ionicity of the M-C bonds correlate with variations in M-C bond energy. This strengthening of metal-aryl bonds accounts for numerous experimental results that indicate a preference for ortho-fluorine substituents.


Science | 2007

Dinitrogen Dissociation on an Isolated Surface Tantalum Atom

Priscilla Avenier; M. Taoufik; Anne Lesage; Xavier Solans-Monfort; Anne Baudouin; A. De Mallmann; Laurent Veyre; Jean-Marie Basset; Odile Eisenstein; Lyndon Emsley; Else A Quadrelli

Both industrial and biochemical ammonia syntheses are thought to rely on the cooperation of multiple metals in breaking the strong triple bond of dinitrogen. Such multimetallic cooperation for dinitrogen cleavage is also the general rule for dinitrogen reductive cleavage with molecular systems and surfaces. We have observed cleavage of dinitrogen at 250°C and atmospheric pressure by dihydrogen on isolated silica surface–supported tantalum(III) and tantalum(V) hydride centers [(≡Si-O)2TaIII-H] and [(≡Si-O)2TaVH3], leading to the TaV amido imido product [(≡SiO)2Ta(=NH)(NH2)]: We assigned the product structure based on extensive characterization by infrared and solid-state nuclear magnetic resonance spectroscopy, isotopic labeling studies, and supporting data from x-ray absorption and theoretical simulations. Reaction intermediates revealed by in situ monitoring of the reaction with infrared spectroscopy support a mechanism highly distinct from those previously observed in enzymatic, organometallic, and heterogeneous N2 activating systems.


New Journal of Chemistry | 2013

Outer sphere hydrogenation catalysis

Odile Eisenstein; Robert H. Crabtree

In the title catalysts, the substrate, typically a ketone, imine or N-heterocycle, remains in the outer sphere (OS). The catalyst transfers hydride and a proton to the unbound substrate either by a concerted or by a stepwise path. These include catalysts not always considered together, such as Bullocks ionic hydrogenation catalysts, bifunctional catalysts in the tradition of Shvo and Noyori and Stephans frustrated Lewis pair catalysts. By omitting the oxidative addition, insertion and reductive elimination pathways of conventional inner sphere (IS) catalysts, these OS pathways are in principle equally open to inexpensive metals and even nonmetal catalysts. These OS pathways lead to useful selectivity properties, particularly Noyoris asymmetric catalysis, but much more remains to be done in this rapidly developing field.


Journal of the American Chemical Society | 2010

Shutting Down Secondary Reaction Pathways: The Essential Role of the Pyrrolyl Ligand in Improving Silica Supported d0-ML4 Alkene Metathesis Catalysts from DFT Calculations

Xavier Solans-Monfort; Christophe Copéret; Odile Eisenstein

The efficiency of silica supported d(0) ML(4) alkene metathesis catalysts [([triple bond]SiO)M(NR(1))(=CHR(2))(X)] (M = Mo, W; R(1) = aryl and alkyl) is influenced by the nature of the X ancillary ligand. Replacing the alkyl ligand by a pyrrolyl ligand dramatically increases the performance of the catalyst. DFT calculations on the metathesis, the deactivation, and the byproduct formation pathways for the imido Mo and W and the alkylidyne Re complexes give a rational for the role of pyrrolyl ligand. Dissymmetry at the metal center leads to more efficient catalyst even when the difference in sigma-donating ability between X and OSi is not large. beta-H transfer at the square based pyramid metallacyclobutane is the key step for catalyst deactivation and byproduct formation. Overall, the greatest benefit of substituting the ancillary alkyl by a pyrrolyl ligand, [([triple bond]SiO)M(ER(1))(=CHR(2))(pyrrolyl)], is in fact not to improve the efficiency of the catalytic cycle of alkene metathesis, but to shut down deactivation and byproduct formation pathways. Pyrrolyl ligand, and more generally ligands having metal-bound-atoms more electronegative than carbon, disfavor mostly the two first steps (beta-H transfer at the metallacyclobutane and subsequent insertion of an ethene in the M-H bond) of the deactivation channel. The [([triple bond]SiO)M(ER(1))(=CHR(2))(pyrrolyl)] catalyst is thus highly efficient because pyrrolyl ligand is optimal: (i) it is still a better electron donor than the siloxy group, thus, favoring the metathesis pathway (dissymmetry at the metal center); and (ii) the nitrogen of the pyrrolyl ligand is more electronegative than the carbon of the alkyl group, thus, specifically disfavoring the decomposition of the metallacyclobutane intermediate via beta-H transfer.


Journal of the American Chemical Society | 2014

Linear-Selective Hydroarylation of Unactivated Terminal and Internal Olefins with Trifluoromethyl-Substituted Arenes

Joseph S. Bair; York Schramm; Alexey G. Sergeev; Eric Clot; Odile Eisenstein; John F. Hartwig

We report a series of hydroarylations of unactivated olefins with trifluoromethyl-substituted arenes that occur with high selectivity for the linear product without directing groups on the arene. We also show that hydroarylations occur with internal, acyclic olefins to yield linear alkylarene products. Experimental mechanistic data provide evidence for reversible formation of an alkylnickel-aryl intermediate and rate-determining reductive elimination to form the carbon-carbon bond. Labeling studies show that formation of terminal alkylarenes from internal alkenes occurs by initial establishment of an equilibrating mixture of alkene isomers, followed by addition of the arene to the terminal alkene. Computational (DFT) studies imply that the aryl C-H bond transfers to a coordinated alkene without oxidative addition and support the conclusion from experiment that reductive elimination is rate-determining and forms the anti-Markovnikov product. The reactions are inverse order in α-olefin; thus the catalytic reaction occurs, in part, because isomerization creates a low concentration of the reactant α-olefin.

Collaboration


Dive into the Odile Eisenstein's collaboration.

Top Co-Authors

Avatar

Kenneth G. Caulton

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Eric Clot

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laurent Maron

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

John C. Huffman

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

William E. Streib

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Feliu Maseras

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xavier Solans-Monfort

Autonomous University of Barcelona

View shared research outputs
Researchain Logo
Decentralizing Knowledge