Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Odile Sainte-Catherine is active.

Publication


Featured researches published by Odile Sainte-Catherine.


Molecular Cancer Research | 2007

Stromal Cell–Derived Factor-1/Chemokine (C-X-C Motif) Ligand 12 Stimulates Human Hepatoma Cell Growth, Migration, and Invasion

Angela Sutton; Veronique Friand; Severine Brulé-Donneger; Thomas Chaigneau; Marianne Ziol; Odile Sainte-Catherine; Aurélie Poiré; Line Saffar; Michel Kraemer; Jany Vassy; Pierre Nahon; Jean-Loup Salzmann; Liliane Gattegno; Nathalie Charnaux

In addition to their physiologic effects in inflammation and angiogenesis, chemokines are involved in cancer pathology. The aim of this study was to determine whether the chemokine stromal cell–derived factor 1 (SDF-1) induces the growth, migration, and invasion of human hepatoma cells. We show that SDF-1 G protein–coupled receptor, chemokine (C-X-C motif) receptor 4 (CXCR4), and SDF-1 mRNA are expressed in human hepatoma Huh7 cells, which secrete and bind SDF-1. This binding depends on CXCR4 and glycosaminoglycans. SDF-1 associates with CXCR4, and syndecan-4 (SDC-4), a heparan sulfate proteoglycan at the plasma membrane of Huh7 cells, induces the growth of Huh7 cells by promoting their entry into the cell cycle, and inhibits the tumor necrosis factor-α–mediated apoptosis of the cells. SDF-1 also reorganizes Huh7 cytoskeleton and induces tyrosine phosphorylation of focal adhesion kinase. Finally, SDF-1 activates matrix metalloproteinase-9, resulting in increased migration and invasion of Huh7 cells. These biological effects of SDF-1 were strongly inhibited by the CXCR4 antagonist AMD3100, by a glycosaminoglycan, heparin, as well as by β-d-xyloside treatment of the cells, or by c-jun NH2-terminal kinase/stress-activated protein kinase inhibitor. Therefore, the CXCR4, glycosaminoglycans, and the mitogen-activated protein kinase signaling pathways are involved in these events. The fact that reducing SDC-4 expression by RNA interference decreased SDF-1–induced Huh7 hepatoma cell migration and invasion strongly indicates that SDC-4 may be an auxiliary receptor for SDF-1. Finally, the fact that CXCR4 is expressed in hepatocellular carcinoma cells from liver biopsies indicates that the in vitro results reported here could be extended to in vivo conditions. (Mol Cancer Res 2007;5(1):21–33)


International Journal of Pharmaceutics | 2009

Superparamagnetic nanovector with anti-cancer properties: γFe2O3@Zoledronate

Farah Benyettou; Yoann Lalatonne; Odile Sainte-Catherine; Maelle Monteil; Laurence Motte

We elaborate a magnetic nanovector to vectorize Zoledronate, an anti-cancer interest molecule of the hydroxmethylenebisphosphonates family. In fact, Zoledronate is a powerful adjuvant in the treatment of bone diseases such as osteoporosis and Pagets disease. But, recent studies have shown that in addition to anti-osteoclastic properties, it presents antitumour properties notably in the case of breast and prostate cancer. However, these properties cannot be exploited due to their very high affinity to divalent cations and their preferentially accumulation in bone. To overcome this problem, one strategy is the vectorization trough maghemite nanocrystal functionalization. The specific surface coating permits to consider gamma Fe(2)O(3)@Zoledronate as a drug delivery vehicle for therapeutic activity. The anchoring to the nanoparticles surface allowed to increase their hydrophobicity and also to change the therapeutic target, increasing the Zoledronate intestinal absorption instead of their accumulation in bone. We show that Zoledronate link the nanoparticle surface through phosphonate groups. The biological in vitro tests performed on breast cancer cell line, MDA-MB 231, showed that gamma Fe(2)O(3)@Zoledronate have antiproliferative activity. In addition, the gamma Fe(2)O(3) core could be used as MRI contrast agent for a good therapeutic evaluation.


Molecular Cancer Therapeutics | 2007

Glycosaminoglycans and their synthetic mimetics inhibit RANTES-induced migration and invasion of human hepatoma cells

Angela Sutton; Veronique Friand; Dulce Papy-Garcia; Maylis Dagouassat; Loïc Martin; Roger Vassy; Oualid Haddad; Odile Sainte-Catherine; Michel Kraemer; Line Saffar; Gérard Y Perret; José Courty; Liliane Gattegno; Nathalie Charnaux

The CC-chemokine regulated on activation, normal T-cell expressed, and presumably secreted (RANTES)/CCL5 mediates its biological activities through activation of G protein–coupled receptors, CCR1, CCR3, or CCR5, and binds to glycosaminoglycans. This study was undertaken to investigate whether this chemokine is involved in hepatoma cell migration or invasion and to modulate these effects in vitro by the use of glycosaminoglycan mimetics. We show that the human hepatoma Huh7 and Hep3B cells express RANTES/CCL5 G protein–coupled receptor CCR1 but not CCR3 nor CCR5. RANTES/CCL5 binding to these cells depends on CCR1 and glycosaminoglycans. Moreover, RANTES/CCL5 strongly stimulates the migration and the invasion of Huh7 cells and to a lesser extent that of Hep3B cells. RANTES/CCL5 also stimulates the tyrosine phosphorylation of focal adhesion kinase and activates matrix metalloproteinase-9 in Huh7 hepatoma cells, resulting in increased invasion of these cells. The fact that RANTES/CCL5-induced migration and invasion of Huh7 cells are both strongly inhibited by anti-CCR1 antibodies and heparin, as well as by β-d-xyloside treatment of the cells, suggests that CCR1 and glycosaminoglycans are involved in these events. We then show by surface plasmon resonance that synthetic glycosaminoglycan mimetics, OTR4120 or OTR4131, directly bind to RANTES/CCL5. The preincubation of the chemokine with each of these mimetics strongly inhibited RANTES-induced migration and invasion of Huh7 cells. Therefore, targeting the RANTES-glycosaminoglycan interaction could be a new therapeutic approach for human hepatocellular carcinoma. [Mol Cancer Ther 2007;6(11):2948–58]


Journal of Medicinal Chemistry | 2012

Oxaphosphinanes: New Therapeutic Perspectives for Glioblastoma

Ludovic Clarion; Carine Jacquard; Odile Sainte-Catherine; Séverine Loiseau; Damien Filippini; Marie-Heĺeǹe Hirlemann; Jean-Noel̈ Volle; David Virieux; Marc Lecouvey; Jean-Luc Pirat; Norbert Bakalara

This paper reports the design and the synthesis of a new family of compounds, the phostines, belonging to the [1,2]oxaphosphinane family. Twenty-six compounds have been screened for their antiproliferative activity against a large panel of NCI cancer cell lines. Because of its easy synthesis and low EC(50) value (500 nM against the C6 rat glioma cell line), compound 3.1a was selected for further biological study. Moreover, the specific biological effect of 3.1a on the glioblastoma phylogenetic cluster from the NCI is dependent on its stereochemistry. Within that cluster, 3.1a has a higher antiproliferative activity than Temozolomide and is more potent than paclitaxel for the SF295 and SNB75 cell lines. In constrast with paclitaxel and vincristine, 3.1a is devoid of astrocyte toxicity. The original activity spectrum of 3.1a on the NCI cancer cell line panel allows the development of this family for use in association with existing drugs, opening new therapeutic perspectives.


Journal of Natural Products | 2010

Structural Characterization and Cytotoxic Properties of an Apiose-Rich Pectic Polysaccharide Obtained from the Cell Wall of the Marine Phanerogam Zostera marina

Vincent Gloaguen; Véronique Brudieux; Brigitte Closs; Aline Barbat; Pierre Krausz; Odile Sainte-Catherine; Michel Kraemer; Emmanuel Maes; Yann Guérardel

Zosterin, an apiose-rich pectic polysaccharide, was extracted and purified from the sea grass Zostera marina. Structural studies conducted by gas chromatography and NMR spectroscopy on a purified zosterin fraction (AGU) revealed a typical apiogalacturonan structure comprising an alpha-1,4-d-galactopyranosyluronan backbone substituted by 1,2-linked apiofuranose oligosaccharides and single apiose residues. The average molecular mass of AGU was estimated to be about 4100 Da with a low polydispersity. AGU inhibited proliferation of A431 human epidermoid carcinoma cells with an approximate IC(50) value of 3 microg/mL (0.7 microM). In addition, AGU inhibited A431 cell migration and invasion. Preliminary experiments showed that inhibition of metalloproteases expression could play a role in these antimigration and anti-invasive properties. Autohydrolysis of AGU, which eliminated apiose and oligo-apiose substituents, led to a virtual disappearance of cytotoxic properties, thus suggesting a direct structure-function relationship with the apiose-rich hairy region of AGU.


PLOS ONE | 2011

Invading Basement Membrane Matrix Is Sufficient for MDA-MB-231 Breast Cancer Cells to Develop a Stable In Vivo Metastatic Phenotype

Mohamed Abdelkarim; Nadejda Vintonenko; Anna Starzec; Aniela Robles; Julie Aubert; Marie-Laure Martin; Samia Mourah; Marie-Pierre Podgorniak; Sylvie Rodrigues-Ferreira; Clara Nahmias; Pierre-Olivier Couraud; Christelle Doliger; Odile Sainte-Catherine; Nicole Peyri; Lei Chen; Jérémie Mariau; Monique Etienne; Gérard-Yves Perret; Michel Crépin; Jean-Luc Poyet; Abdel-Majid Khatib; Mélanie Di Benedetto

Introduction The poor efficacy of various anti-cancer treatments against metastatic cells has focused attention on the role of tumor microenvironment in cancer progression. To understand the contribution of the extracellular matrix (ECM) environment to this phenomenon, we isolated ECM surrogate invading cell populations from MDA-MB-231 breast cancer cells and studied their genotype and malignant phenotype. Methods We isolated invasive subpopulations (INV) from non invasive populations (REF) using a 2D-Matrigel assay, a surrogate of basal membrane passage. INV and REF populations were investigated by microarray assay and for their capacities to adhere, invade and transmigrate in vitro, and to form metastases in nude mice. Results REF and INV subpopulations were stable in culture and present different transcriptome profiles. INV cells were characterized by reduced expression of cell adhesion and cell-cell junction genes (44% of down regulated genes) and by a gain in expression of anti-apoptotic and pro-angiogenic gene sets. In line with this observation, in vitro INV cells showed reduced adhesion and increased motility through endothelial monolayers and fibronectin. When injected into the circulation, INV cells induced metastases formation, and reduced injected mice survival by up to 80% as compared to REF cells. In nude mice, INV xenografts grew rapidly inducing vessel formation and displaying resistance to apoptosis. Conclusion Our findings reveal that the in vitro ECM microenvironment per se was sufficient to select for tumor cells with a stable metastatic phenotype in vivo characterized by loss of adhesion molecules expression and induction of pro-angiogenic and survival factors.


International Journal of Pharmaceutics | 2010

In vitro assessment of liposomal neridronate on MDA-MB-231 human breast cancer cells.

Imène Chebbi; Evelyne Migianu-Griffoni; Odile Sainte-Catherine; Marc Lecouvey; Olivier Seksek

Bisphosphonates have been used for decades in the standard therapy of bone-related diseases, including bone metastasis of various malignancies, and they might as well be toxic on early cancer cells themselves. In order to allow a better delivery of neridronate (a N-containing bisphosphonate with relatively poor activity), liposomes were evaluated in vitro on cancer cell lines (MDA-MB-231, U87-MG and Caco2). After chemical synthesis, this water-soluble molecule was encapsulated into liposomes containing DOPC:DOPG:Chol (72:27:1 molar ratio). The influence of neridronate (free or liposomal) on cell viability or proliferation after treatment was evaluated using the MTT method, as well as cell migration and invasion assays; these techniques showed a drastic improvement of the action of neridronate on MDA-MB-231 cells with an EC(50) 50 times lower when neridronate was encapsulated. Internalization of liposomes was followed by flow cytometry and fluorescence microscopy, demonstrating internalization via the endocytic pathway. Furthermore, since overexpression of matrix metalloproteinases (particularly MMP-2 and MMP-9) has been correlated to poor prognosis in many cancer types, detection of MMP expression is a satisfactory indication of the therapy efficiency and was then performed on treated cells. On MDA-MB-231 cells, MPPs expression was also significantly reduced by neridronate while entrapped in liposomes.


Journal of Natural Products | 2008

Structural Characterization and Cytotoxic Properties of a 4-O-Methylglucuronoxylan from Castanea sativa. 2. Evidence of a Structure-Activity Relationship

Aline Barbat; Vincent Gloaguen; Charlotte Moine; Odile Sainte-Catherine; Michel Kraemer; Hélène Rogniaux; David Ropartz; Pierre Krausz

Xylans were purified from delignified holocellulose alkaline extracts of Castanea sativa (Spanish chestnut) and Argania spinosa (Argan tree) and their structures analyzed by means of GC of their per-trimethylsilylated methylglycoside derivatives and (1)H NMR spectroscopy. The structures deduced were characteristic of a 4-O-methylglucuronoxylan (MGX) and a homoxylan (HX), respectively, with degrees of polymerization ranging from 182 to 360. In the case of MGX, the regular or random distribution of 4-O-methylglucuronic acid along the xylosyl backbone--determined by MALDI mass spectrometry after autohydrolysis of the polysaccharide--varied and depended both on the botanical source from which they were extracted and on the xylan extraction procedure. The MGX also inhibited in different ways the proliferation as well as the migration and invasion capability of A431 human epidermoid carcinoma cells. These biological properties could be correlated with structural features including values of the degree of polymerization, 4-O-MeGlcA to xylose ratios, and distribution of 4-O-MeGlcA along the xylosyl backbone, giving evidence of a defined structure-activity relationship.


PLOS ONE | 2009

New Symmetrically Esterified m-Bromobenzyl Non-Aminobisphosphonates Inhibited Breast Cancer Growth and Metastases

Mohamed Abdelkarim; Erwann Guénin; Odile Sainte-Catherine; Nadejda Vintonenko; Nicole Peyri; Gérard Y Perret; Michel Crépin; Abdel-Majid Khatib; Marc Lecouvey; Mélanie Di Benedetto

Background Although there was growing evidence in the potential use of Bisphosphonates (BPs) in cancer therapy, their strong osseous affinities that contrast their poor soft tissue uptake limited their use. Here, we developed a new strategy to overcome BPs hydrophilicity by masking the phosphonic acid through organic protecting groups and introducing hydrophobic functions in the side chain. Methodology/Principal Findings We synthesized non-nitrogen BPs (non N-BPs) containing bromobenzyl group (BP7033Br) in their side chain that were symmetrically esterified with hydrophobic 4-methoxphenyl (BP7033BrALK) and assessed their effects on breast cancer estrogen-responsive cells (T47D, MCF-7) as well as on non responsive ones (SKBR3, MDA-MB-231 and its highly metastatic derived D3H2LN subclone). BP7033Br ALK was more efficient in inhibiting tumor cell proliferation, migration and survival when compared to BP7033Br. Although both compounds inhibited tumor growth without side effects, only BP7033Br ALK abrogated tumor angiogenesis and D3H2LN cells-induced metastases formation. Conclusion/Significance Taken together these data suggest the potential therapeutic use of this new class of esterified Bisphosphonates (BPs) in the treatment of tumor progression and metastasis without toxic adverse effects.


Journal of Medicinal Chemistry | 2014

C‑Glycoside Mimetics Inhibit Glioma Stem Cell Proliferation, Migration, and Invasion

Ludovic Clarion; Carine Jacquard; Odile Sainte-Catherine; Marc Decoux; Séverine Loiseau; Marc Rolland; Marc Lecouvey; Jean-Philippe Hugnot; Jean-Noël Volle; David Virieux; Jean-Luc Pirat; Norbert Bakalara

This paper reports the design and synthesis of C-glycoside mimetics (d-glycero-d-talo- and d-glycero-d-galactopyranose analogues), a subset of the recently published phostines, belonging to the [1,2]oxaphosphinane core. Eighteen new compounds were tested against 11 cancer cell types belonging to six categories of tumor tissues and three different species. The hit compound 5.3d inhibited invasion and migration of both GBM stem cells (Gli7 and Gli4) and GBM cancer cell lines (C6, SNB75) on fibronectin, vitronectin, and laminin. Ki values for Gli7 and Gli4 migration inhibition on fibronectin were 16 and 31 nM respectively. Ki values for invasion inhibition in a 3D system were 46 nM for Gli7 and 290 nM for Gli4. These activities were associated with an antiproliferative effect on Gli4 (EC50 = 5.20 μM) and Gli7 (EC50 = 2.33 μM). In conclusion, the heptopyranose mimetic 5.3d, devoid of toxicity on astrocyte and cortical neuron cultures at concentrations below 100 μM, opens new therapeutic perspectives against glioblastoma.

Collaboration


Dive into the Odile Sainte-Catherine's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean-Luc Pirat

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Virieux

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge