Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ofelia Mora is active.

Publication


Featured researches published by Ofelia Mora.


Journal of Animal Science | 2010

Induction of peroxisomal proliferator-activated receptor γ and peroxisomal proliferator-activated receptor γ coactivator 1 by unsaturated fatty acids, retinoic acid, and carotenoids in preadipocytes obtained from bovine white adipose tissue

P. García-Rojas; Anaid Antaramian; Laura González-Dávalos; Francesc Villarroya; Armando Shimada; Alfredo Varela-Echavarría; Ofelia Mora

The importance of dietary fat components, such as fatty acids, in the expression of multiple genes is clear. In the case of beef cattle, fat in the form of fatty acids (saturated or unsaturated), vitamin A (mainly retinoic acid), or carotenoids (beta-carotene and lutein) is obtained from dietary feed or pasture. The aim of this work was to study the effect of fatty acids (phytanic and pristanic acids), vitamin A (all-trans and 9-cis retinoic acid), and carotenoids (beta-carotene and lutein) on the expression of PPARgamma and its coactivator PGC-1alpha during differentiation of bovine white adipose tissue. Samples were collected at slaughter from subcutaneous adipose tissue and processed in a solution containing type II collagenase for 2 h at 37 degrees C. Cells were resuspended in basal medium, Dulbeccos modified Eagles medium containing 5% fetal bovine serum, plated on 24-well culture plates at a density of 1 x 10(4) cells/cm(2), and incubated at 37 degrees C in a 5% CO(2) atmosphere. Preadipocyte differentiation after reaching confluence was induced by various treatments: rosiglitazone (20 microM); unsaturated fatty acids: phytanic acid (25, 50, 100 microM) and pristanic acid (25, 50, 100 microM); retinoids: 9-cis retinoic acid (0.5, 0.75, 1 microM) and all-trans retinoic acid (0.5, 0.75, 1 microM); and carotenoids: beta-carotene (10, 20, 30 microM) and lutein (10, 20, 30 microM). Expression of PPARgamma and PGC-1alpha was measured in differentiated cells. Phytanic acid, all-trans retinoic acid, and 9-cis retinoic acid were the best activators of PPARgamma expression, and the combination of 9-cis and all-trans retinoic acid was the best activator of PGC-1alpha expression (P < 0.05). Therefore, these are powerful agents for the promotion of bovine adipogenesis and constitute promising compounds to be used in bovine fattening.


Journal of Animal Science | 2011

Bovine sirtuins: initial characterization and expression of sirtuins 1 and 3 in liver, muscle, and adipose tissue.

Y. Ghinis-Hozumi; Adriana González-Gallardo; L. González-Dávalos; Anaid Antaramian; Francesc Villarroya; Armando Shimada; Alfredo Varela-Echavarría; Ofelia Mora

Sirtuins, the mammalian homologs of the silent information regulator 2 gene of Saccharomyces cerevisiae, are members of the NAD(+)-dependent family of histone deacetylases. In vertebrates, 7 sirtuins have been described, with different cellular localizations and target proteins. Glucose and lipid metabolism are among the processes regulated by these enzymes. In ruminants, gluconeogenesis is the main biochemical pathway by which glucose is obtained. Because sirtuins in bovines have not been studied, the aim of this work was to obtain sequences coding for the 7 sirtuins and determine the expression patterns of sirtuin1 (Sirt1) and sirtuin3 (Sirt3) in the liver, muscle, and adipose tissue of calves and bulls. Using PCR amplification, we obtained sirtuin gene sequences and reported them to the National Center for Biotechnology Information GenBank. Characteristic sequence motifs corresponding to the sirtuin catalytic core domain were found, including the active and zinc-binding sites. Relative expression patterns of Sirt1 and Sirt3 in liver, muscle, and adipose tissue were quantified by real-time PCR, normalizing to the geometric mean of the housekeeping genes cyclophilin A and β-actin. Expression of Sirt1 was less in liver and muscle, whereas it was greater in adipose tissue of adult animals, with statistical differences (P=0.0071) only in the latter. In the case of Sirt3, expression was greater in all 3 adult tissues, but statistical differences were found only in liver (P=0.0141) and muscle (P=0.0017). The greatest expression was observed in liver for Sirt1 and in muscle for Sirt3, whereas the least expression was in muscle for Sirt1 and in adipose tissue for Sirt3. In other species, sirtuin expression (both Sirt1 and Sirt3) in liver is reported to be the greatest among these 3 tissues, a pattern different from what we measured. These differences in expression can be associated with metabolic differences between nonruminant and ruminant species. However, further research on the relationship between bovine sirtuins and ruminant metabolism is required for a better understanding of these fields.


Journal of the Science of Food and Agriculture | 1999

In vitro and in situ disappearance of β-carotene and lutein from lucerne (Medicago sativa) hay in bovine and caprine ruminal fluids

Ofelia Mora; José L Romano; Elvira González; Felipe Ruı́z; Armando Shimada

Two experiments were conducted to determine the rumen fluid disappearance rates (kd) of β-carotene, lutein, total carotene and total xanthophyll from lucerne (Medicago sativa) hay, in two ruminant species: Brahman steers (fat-pigmenting) and Granadine goats (non-pigmenting). Within species, the in vitro and the in situ methods were compared. The concentration of carotenoid compounds was determined by spectrophotometry and high performance liquid chromatography. The in vitro disappearance trends were linear for all compounds (P<0.01). β-carotene kd were 0.13 and 0.37; lutein, 0.20 and 0.25; total carotene, 0.20 and 0.62 and total xanthophyll, 0.30 and 0.77 h −1 for steers and goats, respectively. The in situ disappearance trends were quadratic (P<0.01). Dry matter kd were 1.9 and 1.5% h−1; cellular content, 2.0 and 2.3; β-carotene, 2.5 and 1.2; lutein, 2.5 and 1.5; total carotene, 2.2 and 1.0 and total xanthophyll, 2.1 and 1.1% h−1 for steers and goats, respectively. The large disappearance rates of carotenoids observed in the in situ method vs the virtual absence of disappearance in the in vitro method in both species, can be related to the dry matter and cellular content kd. These results suggest that carotenoids disappear probably by joining the cellular content and not by their direct destruction or by attack from the ruminal microorganisms, and the ruminal disappearance is independent of the species studied. © 1999 Society of Chemical Industry


Canadian Journal of Animal Science | 2001

Presence of fed β-carotene in digesta, excreta, blood, and hepatic and adipose tissues of Holstein steers

Ofelia Mora; J. L. Romano; E. González; F. J. Ruiz; R. Gómez; Armando Shimada

Eight animals were fed a diet without added β-carotene for 49 d and then supplemented with four levels of β-carotene (0, 5.5, 44 or 352 mg kg–1dry matter) for 30 d; the two-phase procedure was then repeated. Steers were killed at the end of the second period. Concentrations of β-carotene were: 0, 0, 227.2 and 2011 mg dL–1 (P 0.1). The estimated β-carotene digestibilities were 66.25, 84.39 and 88.14% for treatments with 5.5, 44 and 352 mg β-carotene kg–1 DM, r...


PLOS ONE | 2015

Insulin Sensitivity in Adipose and Skeletal Muscle Tissue of Dairy Cows in Response to Dietary Energy Level and 2,4-Thiazolidinedione (TZD)

Afshin Hosseini; Muhammad Rizwan Tariq; F. Rosa; Julia Kesser; Zeeshan Muhammad Iqbal; Ofelia Mora; H. Sauerwein; J.K. Drackley; Erminio Trevisi; Juan J. Loor

The effects of dietary energy level and 2,4-thiazolidinedione (TZD) injection on feed intake, body fatness, blood biomarkers and TZD concentrations, genes related to insulin sensitivity in adipose tissue (AT) and skeletal muscle, and peroxisome proliferator-activated receptor gamma (PPARG) protein in subcutaneous AT (SAT) were evaluated in Holstein cows. Fourteen nonpregnant nonlactating cows were fed a control low-energy (CON, 1.30 Mcal/kg) diet to meet 100% of estimated nutrient requirements for 3 weeks, after which half of the cows were assigned to a higher-energy diet (OVE, 1.60 Mcal/kg) and half of the cows continued on CON for 6 weeks. All cows received an intravenous injection of TZD starting 2 weeks after initiation of dietary treatments and for an additional 2 weeks, which served as the washout period. Cows fed OVE had greater energy intake and body mass than CON, and TZD had no effect during the administration period. The OVE cows had greater TZD clearance rate than CON cows. The lower concentration of nonesterified fatty acids (NEFA) and greater concentration of insulin in blood of OVE cows before TZD injection indicated positive energy balance and higher insulin sensitivity. Administration of TZD increased blood concentrations of glucose, insulin, and beta-hydroxybutyrate (BHBA) at 2 to 4 weeks after diet initiation, while the concentration of NEFA and adiponectin (ADIPOQ) remained unchanged during TZD. The TZD upregulated the mRNA expression of PPARG and its targets FASN and SREBF1 in SAT, but also SUMO1 and UBC9 which encode sumoylation proteins known to down-regulate PPARG expression and curtail adipogenesis. Therefore, a post-translational response to control PPARG gene expression in SAT could be a counteregulatory mechanism to restrain adipogenesis. The OVE cows had greater expression of the insulin sensitivity-related genes IRS1, SLC2A4, INSR, SCD, INSIG1, DGAT2, and ADIPOQ in SAT. In skeletal muscle, where PPARA and its targets orchestrate carbohydrate metabolism and fatty acid oxidation, the OVE cows had greater glyceroneogenesis (higher mRNA expression of PC and PCK1), whereas CON cows had greater glucose transport (SLC2A4). Administration of TZD increased triacylglycerol concentration and altered expression of carbohydrate- and fatty acid oxidation-related genes in skeletal muscle. Results indicate that overfeeding did not affect insulin sensitivity in nonpregnant, nonlactating dairy cows. The bovine PPARG receptor appears TZD-responsive, with its activation potentially leading to greater adipogenesis and lipogenesis in SAT, while differentially regulating glucose homeostasis and fatty acid oxidation in skeletal muscle. Targeting PPARG via dietary nutraceuticals while avoiding excessive fat deposition might improve insulin sensitivity in dairy cows during times such as the peripartal period when the onset of lactation naturally decreases systemic insulin release and sensitivity in tissues such as AT.


Journal of Animal Physiology and Animal Nutrition | 2012

Ghrelin stimulates myogenic differentiation in a mouse muscle satellite cell line and in primary cultures of bovine myoblasts

D. Montoya-Flores; Ofelia Mora; Elisa Tamariz; L. González-Dávalos; Adriana González-Gallardo; Anaid Antaramian; Armando Shimada; Alfredo Varela-Echavarría; J. L. Romano-Muñoz

Ghrelin is an acylated hormone that influences food intake, energy metabolism and reproduction, among others. Ghrelin may also stimulate proliferating myoblast cell differentiation and multinucleated myotube fusion. The aim of this work was to assess the effect of human ghrelin (hGHRL) and human ghrelin fragment 1-18 (hGHRL1-18) on myoblast differentiation by means of mRNA expression and protein level. Two types of cells were tested, the cell line i28 obtained from mouse skeletal muscle and primary cultures of bovine myoblasts. Both ghrelin and its N-terminal fragment hGHRL1-18 were used at concentrations of 0, 0.01, 0.1, 1, 10 and 100 nm. Treatments were applied to pre-confluent cultures and were maintained for 4 days. We determined that between 0.1 and 100 nm, hGHRL and hGRHL1-18 had similar effects on myogenic differentiation of i28 cells (p < 0.01). On the other hand, only the higher concentrations (10 and 100 nm) of hGHRL stimulated bovine myoblast differentiation. These results could be attributed to the presence, in both i28 cells and in bovine myoblasts, of the mRNA for GHS-R1a and CD36 receptors. The use of ghrelin in livestock production is still questionable because of the limited effects shown in this study, and additional research is needed in this field.


Animal | 2013

Potential role of sirtuins in livestock production.

Y. Ghinis-Hozumi; Anaid Antaramian; Francesc Villarroya; Enrique Piña; Ofelia Mora

Sirtuins are NAD(+)-dependent histone and protein deacetylases, which have been studied during the last decade with a focus on their role in lifespan extension and age-related diseases under normal and calorie-restricted or pathological conditions. However, sirtuins also have the ability to regulate energy homeostasis as they can sense the metabolic state of the cell through the NAD(+)/NADH ratio; hence, changes in the diet can modify the expression of these enzymes. Dietary manipulations are a common practice currently being used in livestock production with favorable results, probably due in part to the enhanced activity of sirtuins. Nevertheless, sirtuin expression in livestock species has not been a research target. For these reasons, the goal of this review is to awaken interest in these enzymes for future detailed characterization in livestock species by presenting a general introduction to what sirtuins are, how they work and what is known about their role in livestock.


Journal of Fish Biology | 2016

A complete chitinolytic system in the atherinopsid pike silverside Chirostoma estor: gene expression and activities.

Pohls P; Laura González-Dávalos; Ofelia Mora; Armando Shimada; Alfredo Varela-Echavarría; Elva Mayra Toledo-Cuevas; Carlos A. Martínez-Palacios

The expression and digestive activity of pike silverside Chirostoma estor endogenous chitinases were analysed in samples from four life stages: whole eggs; larvae; juvenile intestine and hepatopancreas and adult intestine and hepatopancreas. A chitinase cDNA was cloned and partially sequenced (GenBank accession number: FJ785521). It was highly homologous to non-acidic chitinase sequences from other fish species, suggesting that it is a chitotriosidase. Quantitative PCR showed that this chitinase was expressed throughout the life span of C. estor, with maximum expression in the hepatopancreas of juveniles. Chitotriosidase and chitobiosidase activities were found at all life stages, along with a very high level of N-acetyl glucosaminidase (NAGase). The chitotriosidase activity could be encoded by the cloned complementary (c)DNA, although additional chitinase genes may be present. The chitotriosidase activity appeared to be transcriptionally regulated only at the juvenile stage. The expression and activity of chitinases tended to increase from the early to juvenile stages, suggesting that these variables are stimulated by chitin-rich live food. Nevertheless, the feeding of juvenile and adult fish with both live food and a balanced commercial diet seemed to provoke significant reductions in pancreatic NAGase secretion and/or synthesis in the gut. Moreover, all chitinase activities were lower in adults, probably reflecting a higher intake and use of the balanced diet. The observation of chitotriosidase and chitobiosidase activities together with a very high NAGase activity suggest the presence of a complete and compensatory chitinolytic chitinase system that enables this stomachless short-gut fish species to use chitin as an energy substrate. These novel findings suggest that dietary inclusions of chitin-rich ingredients or by-products might reduce the farming costs of C. estor without impairing performance.


Archives of Biochemistry and Biophysics | 2018

β- Adrenoceptors activate hepatic glutathione efflux through an unreported pathway

Deyamira Matuz-Mares; Alain Hernández-Vázquez; Héctor Riveros-Rosas; Raquel Guinzberg; Tania Quesada-López; Alfonso Cárabez-Trejo; Ofelia Mora; Enrique Piña

The physiological regulation of hepatic glutathione efflux by catecholamines is poorly understood. The purpose of this work was to review the role of adrenergic receptors (AR) on total glutathione (GT) efflux in rat liver. Two models were used: isolated hepatocytes and perfused livers. In hepatocytes 10 μM adrenaline (Adr), but not isoproterenol (Iso) a β-AR agonist, or phenylephrine (Phe) an α1-AR agonist, (in a Krebs-Henseleit buffer (KHB) enriched with Ca2+ and some aminoacids) increased in 13% GT efflux. In livers perfused with KHB, Adr or Iso at 1 μmolar doses (but not Phe) stimulated 11-fold initial velocity of GT release, but only during the first 2 min of perfusion. This immediate response progressively disappeared during the following 15 min of perfusion. A second phase of GT efflux, observed between 2 and 14 min of perfusion, mimics the one reported earlier in isolated hepatocytes. The ED50 for Adr and Iso activation are in the range of 320 nM and 10 nM, respectively. Iso-mediated GT release requires Ca2+ to work, and was prevented by H89, glibenclamide, cystic fibrosis transmembrane regulator (CFTR) antibodies, and a direct CFTR inhibitor. This short-lived GT release system is associated to PKA activation and probably operates through CFTR.


Cells Tissues Organs | 2017

PPAR Agonists Promote the Differentiation of Porcine Bone Marrow Mesenchymal Stem Cells into the Adipogenic and Myogenic Lineages

Rosa M. Pérez-Serrano; M. Laura González-Dávalos; Carlos Lozano-Flores; Armando Shimada; Anaid Antaramian; Alfredo Varela-Echavarría; Ofelia Mora

Purpose: The aim of this work was to evaluate the effect of PPAR agonists on the differentiation and metabolic features of porcine mesenchymal stem cells induced to the adipogenic or myogenic lineages. Methods: Bone marrow MSCs from neonate pigs were isolated and identified by cell proliferation, cell surface markers or the gene expression of stem cells (CD44, CD90, CD105 or Oct4 and Nanog, respectively). Cells were differentiated into adipose or muscle cells and treated with the PPAR agonists; adipogenic and myogenic differentiation was promoted by adding these compounds. The expression of PPARγ (an adipose marker) and MyoD1 and MyHC (muscle markers), metabolic changes and expression levels of metabolic enzymes involved in glycolysis, lipogenesis, lipolysis and the pentose phosphate pathway were tested by qPCR. Results: MSCs from neonate pigs exhibited high proliferation and were positive for CD44, CD90 and CD105 markers and Oct4 and Nanog expression. The treatment that promoted the highest expression of PPARγ was 50 µM of conjugated linoleic acid (CLA) c9 t11 (6.44 ± 0.69-fold, p ≤ 0.0001) in the adipose differentiation, and upregulation of HX2, ACCAα, ATGL, LPL and G6DP (p ≤ 0.0001) and downregulation of PFK and ACCAβ (p ≤ 0.0001) were found. For muscle differentiation, the best treatment was 50 µM of CLA c10 t12 (59.72 ± 4.72-fold, p ≤ 0.0001), and metabolic changes were upregulation of PFK, ACCAβ, G6DP, CPT1 and PPARβ/δ (p ≤ 0.0001), but no effect was observed with HX2 and ACCAα (p ≥ 0.05). Conclusions: Our results suggest that differentiated cells exhibit a typical cell lineage metabolism and higher efficiencies both in anabolism and catabolism.

Collaboration


Dive into the Ofelia Mora's collaboration.

Top Co-Authors

Avatar

Armando Shimada

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Anaid Antaramian

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Alfredo Varela-Echavarría

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Enrique Piña

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Laura González-Dávalos

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Francesc Villarroya

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Jesús J. Ramírez-Espinosa

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Rosa M. Pérez-Serrano

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

A. González

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Adriana González-Gallardo

National Autonomous University of Mexico

View shared research outputs
Researchain Logo
Decentralizing Knowledge