Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ofer Kfir is active.

Publication


Featured researches published by Ofer Kfir.


Nature Materials | 2013

Resonant light trapping in ultrathin films for water splitting

Hen Dotan; Ofer Kfir; Elad Sharlin; Oshri Blank; Moran Gross; Irina Dumchin; Guy Ankonina; Avner Rothschild

Semiconductor photoelectrodes for solar hydrogen production by water photoelectrolysis must employ stable, non-toxic, abundant and inexpensive visible-light absorbers. Iron oxide (α-Fe(2)O(3)) is one of few materials meeting these requirements, but its poor transport properties present challenges for efficient charge-carrier generation, separation, collection and injection. Here we show that these challenges can be addressed by means of resonant light trapping in ultrathin films designed as optical cavities. Interference between forward- and backward-propagating waves enhances the light absorption in quarter-wave or, in some cases, deeper subwavelength films, amplifying the intensity close to the surface wherein photogenerated minority charge carriers (holes) can reach the surface and oxidize water before recombination takes place. Combining this effect with photon retrapping schemes, such as using V-shaped cells, provides efficient light harvesting in ultrathin films of high internal quantum efficiency, overcoming the trade-off between light absorption and charge collection. A water photo-oxidation current density of 4 mA cm(-2) was achieved using a V-shaped cell comprising ~26-nm-thick Ti-doped α-Fe(2)O(3) films on back-reflector substrates coated with silver-gold alloy.


Nature Photonics | 2015

Generation of bright phase-matched circularly-polarized extreme ultraviolet high harmonics

Ofer Kfir; Patrik Grychtol; Emrah Turgut; Ronny Knut; Dmitriy Zusin; Dimitar Popmintchev; Tenio Popmintchev; Hans T. Nembach; Justin M. Shaw; Avner Fleischer; Henry C. Kapteyn; Margaret M. Murnane; Oren Cohen

Circularly-polarized extreme UV and X-ray radiation provides valuable access to the structural, electronic and magnetic properties of materials. To date, this capability was available only at large-scale X-ray facilities such as synchrotrons. Here we demonstrate the first bright, phase-matched, extreme UV circularly-polarized high harmonics and use this new light source for magnetic circular dichroism measurements at the M-shell absorption edges of Co. We show that phase matching of circularly-polarized harmonics is unique and robust, producing a photon flux comparable to the linearly polarized high harmonic sources that have been used very successfully for ultrafast element-selective magneto-optic experiments. This work thus represents a critical advance that makes possible element-specific imaging and spectroscopy of multiple elements simultaneously in magnetic and other chiral media with very high spatial and temporal resolution, using tabletop-scale setups.


conference on lasers and electro optics | 2015

Bright circularly polarized soft x-ray high harmonics for x-ray magnetic circular dichroism

Tingting Fan; Patrik Gychtol; Ronny Knut; Carlos Hernandez-Garcia; Daniel D. Hickstein; Christian Gentry; Craig W. Hogle; Dmitriy Zusin; Kevin M. Dorney; Oleg Shpyrko; Oren Cohen; Ofer Kfir; Luis Plaja; Andreas Becker; Agnieszka Jaron-Becker; Margaret M. Murnane; Henry C. Kapteyn; Tenio Popmintchev

Significance The new ability to generate circularly polarized coherent (laser-like) beams of short wavelength high harmonics in a tabletop-scale setup is attracting intense interest worldwide. Although predicted in 1995, this capability was demonstrated experimentally only in 2014. However, all work to date (both theory and experiment) studied circularly polarized harmonics only in the extreme UV (EUV) region of the spectrum at wavelengths >18 nm. In this new work done in a broad international collaboration, we demonstrate the first soft X-ray high harmonics with circular polarization to wavelengths λ < 8 nm and the first tabletop soft X-ray magnetic circular dichroism (XMCD) measurements, and also uncover new X-ray light science that will inspire many more studies of circular high-harmonic generation (HHG). We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform.


Science Advances | 2016

Tomographic reconstruction of circularly polarized high-harmonic fields: 3D attosecond metrology

Cong Chen; Zhensheng Tao; Carlos Hernandez-Garcia; Piotr Matyba; Adra Carr; Ronny Knut; Ofer Kfir; Dimitry Zusin; Christian Gentry; Patrik Grychtol; Oren Cohen; Luis Plaja; Andreas Becker; Agnieszka Jaron-Becker; Henry C. Kapteyn; Margaret M. Murnane

Circularly polarized attosecond pulse trains in the EUV region were reconstructed using 3D attosecond metrology. Bright, circularly polarized, extreme ultraviolet (EUV) and soft x-ray high-harmonic beams can now be produced using counter-rotating circularly polarized driving laser fields. Although the resulting circularly polarized harmonics consist of relatively simple pairs of peaks in the spectral domain, in the time domain, the field is predicted to emerge as a complex series of rotating linearly polarized bursts, varying rapidly in amplitude, frequency, and polarization. We extend attosecond metrology techniques to circularly polarized light by simultaneously irradiating a copper surface with circularly polarized high-harmonic and linearly polarized infrared laser fields. The resulting temporal modulation of the photoelectron spectra carries essential phase information about the EUV field. Utilizing the polarization selectivity of the solid surface and by rotating the circularly polarized EUV field in space, we fully retrieve the amplitude and phase of the circularly polarized harmonics, allowing us to reconstruct one of the most complex coherent light fields produced to date.


Journal of Physics B | 2016

Helicity-Selective Phase-Matching and Quasi-Phase matching of Circularly Polarized High-Order Harmonics: Towards Chiral Attosecond Pulses

Ofer Kfir; Patrik Grychtol; Emrah Turgut; Ronny Knut; Dmitriy Zusin; Avner Fleischer; Eliyahu Bordo; Tingting Fan; Dimitar Popmintchev; Tenio Popmintchev; Henry C. Kapteyn; Margaret M. Murnane; Oren Cohen

Author(s): Kfir, O; Grychtol, P; Turgut, E; Knut, R; Zusin, D; Fleischer, A; Bordo, E; Fan, T; Popmintchev, D; Popmintchev, T; Kapteyn, H; Murnane, M; Cohen, O | Abstract:


Nature Communications | 2015

Sparsity-based super-resolved coherent diffraction imaging of one-dimensional objects

Pavel Sidorenko; Ofer Kfir; Yoav Shechtman; Avner Fleischer; Yonina C. Eldar; Mordechai Segev; Oren Cohen

Phase-retrieval problems of one-dimensional (1D) signals are known to suffer from ambiguity that hampers their recovery from measurements of their Fourier magnitude, even when their support (a region that confines the signal) is known. Here we demonstrate sparsity-based coherent diffraction imaging of 1D objects using extreme-ultraviolet radiation produced from high harmonic generation. Using sparsity as prior information removes the ambiguity in many cases and enhances the resolution beyond the physical limit of the microscope. Our approach may be used in a variety of problems, such as diagnostics of defects in microelectronic chips. Importantly, this is the first demonstration of sparsity-based 1D phase retrieval from actual experiments, hence it paves the way for greatly improving the performance of Fourier-based measurement systems where 1D signals are inherent, such as diagnostics of ultrashort laser pulses, deciphering the complex time-dependent response functions (for example, time-dependent permittivity and permeability) from spectral measurements and vice versa.


Applied Physics Letters | 2016

In-line production of a bi-circular field for generation of helically polarized high-order harmonics

Ofer Kfir; Eliyahu Bordo; Gil Ilan Haham; Oren Lahav; Avner Fleischer; Oren Cohen

The recent demonstration of bright circularly polarized high-order harmonics of a bi-circular pump field gave rise to new opportunities in ultrafast chiral science. In previous works, the required nontrivial bi-circular pump field was produced using a relatively complicated and sensitive Mach-Zehnder-like interferometer. We propose a compact and stable in-line apparatus for converting a quasi-monochromatic linearly polarized ultrashort driving laser field into a bi-circular field and employ it for generation of helically polarized high-harmonics. Furthermore, utilizing the apparatus for a spectroscopic spin-mixing measurement, we identify the photon spins of the bi-circular weak component field that are annihilated during the high harmonics process.


Science Advances | 2017

Nanoscale magnetic imaging using circularly polarized high-harmonic radiation

Ofer Kfir; Sergey Zayko; Christina Nolte; Murat Sivis; Marcel Möller; Birgit Hebler; Sri Sai Phani Kanth Arekapudi; Daniel Steil; Sascha Schäfer; M. Albrecht; Oren Cohen; Stefan Mathias; Claus Ropers

We introduce laboratory-scale magneto-optical imaging with sub–50-nm resolution using high-harmonic radiation. This work demonstrates nanoscale magnetic imaging using bright circularly polarized high-harmonic radiation. We utilize the magneto-optical contrast of worm-like magnetic domains in a Co/Pd multilayer structure, obtaining quantitative amplitude and phase maps by lensless imaging. A diffraction-limited spatial resolution of 49 nm is achieved with iterative phase reconstruction enhanced by a holographic mask. Harnessing the exceptional coherence of high harmonics, this approach will facilitate quantitative, element-specific, and spatially resolved studies of ultrafast magnetization dynamics, advancing both fundamental and applied aspects of nanoscale magnetism.


Optics Letters | 2017

Selective suppression of high-order harmonics within phase-matched spectral regions

Gavriel Lerner; Tzvi Diskin; Ofer Neufeld; Ofer Kfir; Oren Cohen

Phase matching in high-harmonic generation leads to enhancement of multiple harmonics. It is sometimes desired to control the spectral structure within the phase-matched spectral region. We propose a scheme for selective suppression of high-order harmonics within the phase-matched spectral region while weakly influencing the other harmonics. The method is based on addition of phase-mismatched segments within a phase-matched medium. We demonstrate the method numerically in two examples. First, we show that one phase-mismatched segment can significantly suppress harmonic orders 9, 15, and 21. Second, we show that two phase-mismatched segments can efficiently suppress circularly polarized harmonics with one helicity over the other when driven by a bi-circular field. The new method may be useful for various applications, including the generation of highly helical bright attosecond pulses.


New Journal of Physics | 2012

Narrow-bandwidth high-order harmonics driven by long-duration hot spots

Maxim Kozlov; Ofer Kfir; Avner Fleischer; Alex F. Kaplan; Tal Carmon; Harald G. L. Schwefel; Guy Bartal; Oren Cohen

We predict and investigate the emission of high-order harmonics by atoms that cross intense laser hot spots that last for a nanosecond or longer. An atom that moves through a nanometer-scale hot spot at characteristic thermal velocity can emit high-order harmonics in a similar fashion to an atom that is irradiated by a short-duration (picosecond-scale) laser pulse. We analyze the collective emission from a thermal gas and from a jet of atoms. In both cases, the line shape of a high-order harmonic exhibits a narrow spike with spectral width that is determined by the bandwidth of the driving laser. Finally, we discuss a scheme for producing long-duration laser hot spots with intensity in the range of the intensity threshold for high-harmonic generation. In the proposed scheme, the hot spot is produced by a long laser pulse that is consecutively coupled to a high-quality micro-resonator and a metallic nano-antenna. This system may be used for generating ultra-narrow bandwidth extreme-ultraviolet radiation through frequency up-conversion of a low-cost compact pump laser.

Collaboration


Dive into the Ofer Kfir's collaboration.

Top Co-Authors

Avatar

Oren Cohen

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Avner Fleischer

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Henry C. Kapteyn

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Margaret M. Murnane

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Ronny Knut

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Dmitriy Zusin

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Pavel Sidorenko

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Christian Gentry

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Patrik Grychtol

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Tenio Popmintchev

University of Colorado Boulder

View shared research outputs
Researchain Logo
Decentralizing Knowledge