Ofer Prager
Ben-Gurion University of the Negev
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ofer Prager.
Annals of Neurology | 2014
Guy Bar-Klein; Luisa P. Cacheaux; Lyn Kamintsky; Ofer Prager; Itai Weissberg; Karl Schoknecht; Paul Cheng; Sooyoung Kim; Lydia Wood; Uwe Heinemann; Daniela Kaufer; Alon Friedman
Acquired epilepsy is frequently associated with structural lesions after trauma, stroke, and infections. Although seizures are often difficult to treat, there is no clinically applicable strategy to prevent the development of epilepsy in patients at risk. We have recently shown that vascular injury is associated with activation of albumin‐mediated transforming growth factor β (TGF‐β) signaling, and followed by local inflammatory response and epileptiform activity ex vivo. Here we investigated albumin‐mediated TGF‐β signaling and tested the efficacy of blocking the TGF‐β pathway in preventing epilepsy.
PLOS ONE | 2012
Haviv Levi; Karl Schoknecht; Ofer Prager; Yoash Chassidim; Itai Weissberg; Yonatan Serlin; Alon Friedman
Purpose The treatment of stroke remains a challenge. Animal studies showing that electrical stimulation of the sphenopalatine ganglion (SPG) exerts beneficial effects in the treatment of stroke have led to the initiation of clinical studies. However, the detailed effects of SPG stimulation on the injured brain are not known. Methods The effect of acute SPG stimulation was studied by direct vascular imaging, fluorescent angiography and laser Doppler flowmetry in the sensory motor cortex of the anaesthetized rat. Focal cerebral ischemia was induced by the rose bengal (RB) photothrombosis method. In chronic experiments, SPG stimulation, starting 15 min or 24 h after photothrombosis, was given for 3 h per day on four consecutive days. Structural damage was assessed using histological and immunohistochemical methods. Cortical functions were assessed by quantitative analysis of epidural electro-corticographic (ECoG) activity continuously recorded in behaving animals. Results Stimulation induced intensity- and duration-dependent vasodilation and increased cerebral blood flow in both healthy and photothrombotic brains. In SPG-stimulated rats both blood brain-barrier (BBB) opening, pathological brain activity and lesion volume were attenuated compared to untreated stroke animals, with no apparent difference in the glial response surrounding the necrotic lesion. Conclusion SPG-stimulation in rats induces vasodilation of cortical arterioles, partial reperfusion of the ischemic lesion, and normalization of brain functions with reduced BBB dysfunction and stroke volume. These findings support the potential therapeutic effect of SPG stimulation in focal cerebral ischemia even when applied 24 h after stroke onset and thus may extend the therapeutic window of currently administered stroke medications.
Epilepsia | 2012
Andreas Wunder; Karl Schoknecht; Danica B. Stanimirovic; Ofer Prager; Yoash Chassidim
The blood–brain barrier (BBB) is a highly complex structure, which separates the extracellular fluid of the central nervous system (CNS) from the blood of CNS vessels. A wide range of neurologic conditions, including stroke, epilepsy, Alzheimer’s disease, and brain tumors, are associated with perturbations of the BBB that contribute to their pathology. The common consequence of a BBB dysfunction is increased permeability, leading to extravasation of plasma constituents and vasogenic brain edema. The BBB impairment can persist for long periods, being involved in secondary inflammation and neuronal dysfunction, thus contributing to disease pathogenesis. Therefore, reliable imaging of the BBB impairment is of major importance in both clinical management of brain diseases and in experimental research. From landmark studies by Ehrlich and Goldman, the use of dyes (probes) has played a critical role in understanding BBB functions. In recent years methodologic advances in morphologic and functional brain imaging have provided insight into cellular and molecular interactions underlying BBB dysfunction in animal disease models. These imaging techniques, which range from in situ staining to noninvasive in vivo imaging, have different spatial resolution, sensitivity, and capacity for quantitative and kinetic measures of the BBB impairment. Despite significant advances, the translation of these techniques into clinical applications remains slow. This review outlines key recent advances in imaging techniques that have contributed to the understanding of BBB dysfunction in disease and discusses major obstacles and opportunities to advance these techniques into the clinical realm.
Journal of Cerebral Blood Flow and Metabolism | 2014
Karl Schoknecht; Ofer Prager; Udi Vazana; Lyn Kamintsky; Denise Harhausen; Marietta Zille; Lena Figge; Yoash Chassidim; Eyk Schellenberger; Richard Kovács; Uwe Heinemann; Alon Friedman
Focal cerebral ischemia is among the main causes of death and disability worldwide. The ischemic core often progresses, invading the peri-ischemic brain; however, assessing the propensity of the peri-ischemic brain to undergo secondary damage, understanding the underlying mechanisms, and adjusting treatment accordingly remain clinically unmet challenges. A significant hallmark of the peri-ischemic brain is dysfunction of the blood-brain barrier (BBB), yet the role of disturbed vascular permeability in stroke progression is unclear. Here we describe a longitudinal in vivo fluorescence imaging approach for the evaluation of cortical perfusion, BBB dysfunction, free radical formation and cellular injury using the photothrombosis vascular occlusion model in male Sprague Dawley rats. Blood-brain barrier dysfunction propagated within the peri-ischemic brain in the first hours after photothrombosis and was associated with free radical formation and cellular injury. Inhibiting free radical signaling significantly reduced progressive cellular damage after photothrombosis, with no significant effect on blood flow and BBB permeability. Our approach allows a dynamic follow-up of cellular events and their response to therapeutics in the acutely injured cerebral cortex.
NeuroImage | 2010
Ofer Prager; Yoash Chassidim; Chen Klein; Haviv Levi; Ilan Shelef; Alon Friedman
The brain is characterized by an extremely rich blood supply, regulated by changes in blood vessel diameter and blood flow, depending on metabolic demands. The blood-brain barrier (BBB)-a functional and structural barrier separating the intravascular and neuropil compartments-characterizes the brains vascular bed and is essential for normal brain functions. Disruptions to the regional cerebral blood supply, to blood drainage and to BBB properties have been described in most common neurological disorders, but there is a lack of quantitative methods for assessing blood flow dynamics and BBB permeability in small blood vessels under both physiological and pathological conditions. Here, we present a quantitative image analysis approach that allows the characterization of relative changes in the regional cerebral blood flow (rCBF) and BBB properties in small surface cortical vessels. In experiments conducted using the open window technique in rats, a fluorescent tracer was injected into the tail vein, and images of the small vessels at the surface of the cortex were taken using a fast CCD camera. Pixel-based image analysis included registration and characterization of the changes in fluorescent intensity, followed by cluster analysis. This analysis enabled the characterization of rCBF in small arterioles and venules and changes in BBB permeability. The method was implemented successfully under experimental conditions, including increased rCBF induced by neural stimulation, bile salt-induced BBB breakdown, and photothrombosis-mediated local ischemia. The new approach may be used to study changes in rCBF, neurovascular coupling and BBB permeability under normal and pathological brain conditions.
Journal of Cerebral Blood Flow and Metabolism | 2017
Kristina Lippmann; Lyn Kamintsky; Sooyoung Kim; Svetlana Lublinsky; Ofer Prager; Julia Nichtweiss; Seda Salar; Daniela Kaufer; Uwe Heinemann; Alon Friedman
Peri-infarct opening of the blood–brain barrier may be associated with spreading depolarizations, seizures, and epileptogenesis as well as cognitive dysfunction. We aimed to investigate the mechanisms underlying neural network pathophysiology in the blood–brain barrier-dysfunctional hippocampus. Photothrombotic stroke within the rat neocortex was associated with increased intracranial pressure, vasogenic edema, and peri-ischemic blood–brain barrier dysfunction that included the ipsilateral hippocampus. Intrahippocampal recordings revealed electrographic seizures within the first week in two-thirds of animals, accompanied by a reduction in gamma and increase in theta frequency bands. Synaptic interactions were studied in parasagittal hippocampal slices at 24 h and seven days post-stroke. Field potential recordings in CA1 and CA3 uncovered multiple population spikes, epileptiform episodes, and spreading depolarizations at 24 h. Input–output analysis revealed that fEPSP-spike coupling was significantly enhanced at seven days. In addition, CA1 feedback and feedforward inhibition were diminished. Slices generating epileptiform activity at seven days revealed impaired bidirectional long-term plasticity following high and low-frequency stimulation protocols. Microarray and PCR data confirmed changes in expression of astrocyte-related genes and suggested downregulation in expression of GABAA-receptor subunits. We conclude that blood-brain barrier dysfunction in the peri-infarct hippocampus is associated with early disinhibition, hyperexcitability, and abnormal synaptic plasticity.
Experimental and Therapeutic Medicine | 2017
Ofer Prager; Alon Friedman; Yaffa Mizrachi Nebenzahl
Bacterial meningitis is an inflammatory disease of the meninges of the central nervous system (CNS). Streptococcus pneumoniae (S. pneumoniae), Neisseria meningitidis, and Haemophilus influenzae are the major bacterial pathogens causing meningitis with S. pneumoniae being responsible for two thirds of meningitis cases in the developed world. To reach the CNS following nasopharyngeal colonization and bacteraemia, the bacteria traverse from the circulation across the blood brain barrier (BBB) and choroid plexus. While the BBB has a protective role in healthy individuals by shielding the CNS from neurotoxic substances circulating in the blood and maintaining the homeostasis within the brain environment, dysfunction of the BBB is associated with the pathophysiology of numerous neurologic disorders, including bacterial meningitis. Inflammatory processes, including release of a broad range of cytokines and free radicals, further increase vascular permeability and contribute to the excessive neural damage observed. Injury to the cerebral microvasculature and loss of blood flow auto-regulation promote increased intracranial pressure and may lead to vascular occlusion. Other common complications commonly associated with meningitis include abnormal neuronal hyper-excitability (e.g., seizures) and loss of hearing. Despite the existence of antibiotic treatment and adjuvant therapy, the relatively high mortality rate and the severe outcomes among survivors of pneumococcal meningitis in developing and developed countries increase the urgency in the requirement of discovering novel biomarkers for the early diagnosis as well as novel treatment approaches. The present review aimed to explore the changes in the brain vascular barriers, which allow S. pneumoniae to invade the CNS, and describe the resultant brain injuries following bacterial meningitis.
Frontiers in Cellular Neuroscience | 2018
Richard Kovács; Zoltan Gerevich; Alon Friedman; Jakub Otáhal; Ofer Prager; Siegrun Gabriel; Nikolaus Berndt
Epilepsy is characterized by the regular occurrence of seizures, which follow a stereotypical sequence of alterations in the electroencephalogram. Seizures are typically a self limiting phenomenon, concluding finally in the cessation of hypersynchronous activity and followed by a state of decreased neuronal excitability which might underlie the cognitive and psychological symptoms the patients experience in the wake of seizures. Many efforts have been devoted to understand how seizures spontaneously stop in hope to exploit this knowledge in anticonvulsant or neuroprotective therapies. Besides the alterations in ion-channels, transmitters and neuromodulators, the successive build up of disturbances in energy metabolism have been suggested as a mechanism for seizure termination. Energy metabolism and substrate supply of the brain are tightly regulated by different mechanisms called neurometabolic and neurovascular coupling. Here we summarize the current knowledge whether these mechanisms are sufficient to cover the energy demand of hypersynchronous activity and whether a mismatch between energy need and supply could contribute to seizure control.
Seminars in Cell & Developmental Biology | 2015
Yoash Chassidim; Udi Vazana; Ofer Prager; Ronel Veksler; Guy Bar-Klein; Karl Schoknecht; Michael Fassler; Svetlana Lublinsky; Ilan Shelef
Archive | 2009
Alon Friedman; Yoash Chassidim; Ofer Prager; Ilan Shelef