Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ofir Hakim is active.

Publication


Featured researches published by Ofir Hakim.


Immunity | 2011

Early Th1 Cell Differentiation Is Marked by a Tfh Cell-like Transition

Shingo Nakayamada; Yuka Kanno; Hayato Takahashi; Dragana Jankovic; Kristina T. Lu; Thomas A. Johnson; Hong-Wei Sun; Golnaz Vahedi; Ofir Hakim; Robin Handon; Pamela L. Schwartzberg; Gordon L. Hager; John J. O'Shea

Follicular helper T (Tfh) cells comprise an important subset of helper T cells; however, their relationship with other helper lineages is incompletely understood. Herein, we showed interleukin-12 acting via the transcription factor STAT4 induced both Il21 and Bcl6 genes, generating cells with features of both Tfh and Th1 cells. However, STAT4 also induced the transcription factor T-bet. With ChIP-seq, we defined the genome-wide targets of T-bet and found that it repressed Bcl6 and other markers of Tfh cells, thereby attenuating the nascent Tfh cell-like phenotype in the late phase of Th1 cell specification. Tfh-like cells were rapidly generated after Toxoplasma gondii infection in mice, but T-bet constrained Tfh cell expansion and consequent germinal center formation and antibody production. Our data argue that Tfh and Th1 cells share a transitional stage through the signal mediated by STAT4, which promotes both phenotypes. However, T-bet represses Tfh cell functionalities, promoting full Th1 cell differentiation.


Nature | 2012

DNA damage defines sites of recurrent chromosomal translocations in B lymphocytes

Ofir Hakim; Wolfgang Resch; Arito Yamane; Isaac A. Klein; Kyong-Rim Kieffer-Kwon; Mila Jankovic; Thiago Y. Oliveira; Anne Bothmer; Ty C. Voss; Camilo Ansarah-Sobrinho; Ewy Mathe; Genqing Liang; Jesse Cobell; Hirotaka Nakahashi; Davide F. Robbiani; André Nussenzweig; Gordon L. Hager; Michel C. Nussenzweig; Rafael Casellas

Recurrent chromosomal translocations underlie both haematopoietic and solid tumours. Their origin has been ascribed to selection of random rearrangements, targeted DNA damage, or frequent nuclear interactions between translocation partners; however, the relative contribution of each of these elements has not been measured directly or on a large scale. Here we examine the role of nuclear architecture and frequency of DNA damage in the genesis of chromosomal translocations by measuring these parameters simultaneously in cultured mouse B lymphocytes. In the absence of recurrent DNA damage, translocations between Igh or Myc and all other genes are directly related to their contact frequency. Conversely, translocations associated with recurrent site-directed DNA damage are proportional to the rate of DNA break formation, as measured by replication protein A accumulation at the site of damage. Thus, non-targeted rearrangements reflect nuclear organization whereas DNA break formation governs the location and frequency of recurrent translocations, including those driving B-cell malignancies.


Genome Research | 2011

Diverse gene reprogramming events occur in the same spatial clusters of distal regulatory elements

Ofir Hakim; Myong Hee Sung; Ty C. Voss; Erik Splinter; Sam John; Peter J. Sabo; Robert E. Thurman; John A. Stamatoyannopoulos; Wouter de Laat; Gordon L. Hager

The spatial organization of genes in the interphase nucleus plays an important role in establishment and regulation of gene expression. Contradicting results have been reported to date, with little consensus about the dynamics of nuclear organization and the features of the contact loci. In this study, we investigated the properties and dynamics of genomic loci that are in contact with glucocorticoid receptor (GR)-responsive loci. We took a systematic approach, combining genome-wide interaction profiling by the chromosome conformation capture on chip (4C) technology with expression, protein occupancy, and chromatin accessibility profiles. This approach allowed a comprehensive analysis of how distinct features of the linear genome are organized in the three-dimensional nuclear space in the context of rapid gene regulation. We found that the transcriptional response to GR occurs without dramatic nuclear reorganization. Moreover, contrary to the view of transcription-driven organization, even genes with opposite transcriptional responses colocalize. Regions contacting GR-regulated genes are not particularly enriched for GR-regulated loci or for any functional group of genes, suggesting that these subnuclear environments are not organized to respond to a specific factor. The contact regions are, however, highly enriched for DNase I-hypersensitive sites that comprehensively mark cell-type-specific regulatory sites. These findings indicate that the nucleus is pre-organized in a conformation allowing rapid transcriptional reprogramming, and this organization is significantly correlated with cell-type-specific chromatin sites accessible to regulatory factors. Numerous open chromatin loci may be arranged in nuclear domains that are poised to respond to diverse signals in general and to permit efficient gene regulation.


Cell Reports | 2014

A Macrohistone Variant Links Dynamic Chromatin Compaction to BRCA1-Dependent Genome Maintenance

Simran Khurana; Michael J. Kruhlak; Jeongkyu Kim; Andy D. Tran; Jinping Liu; Katherine Nyswaner; Lei Shi; Parthav Jailwala; Myong-Hee Sung; Ofir Hakim; Philipp Oberdoerffer

SUMMARY Appropriate DNA double-strand break (DSB) repair factor choice is essential for ensuring accurate repair outcome and genomic integrity. The factors that regulate this process remain poorly understood. Here, we identify two repressive chromatin components, the macrohistone variant macroH2A1 and the H3K9 methyltransferase and tumor suppressor PRDM2, which together direct the choice between the antagonistic DSB repair mediators BRCA1 and 53BP1. The macroH2A1/PRDM2 module mediates an unexpected shift from accessible to condensed chromatin that requires the ataxia telangiectasia mutated (ATM)-dependent accumulation of both proteins at DSBs in order to promote DSB-flanking H3K9 dimethylation. Remarkably, loss of macroH2A1 or PRDM2, as well as experimentally induced chromatin decondensation, impairs the retention of BRCA1, but not 53BP1, at DSBs. As a result, mac-roH2A1 and/or PRDM2 depletion causes epistatic defects in DSB end resection, homology-directed repair, and the resistance to poly(ADP-ribose) polymerase (PARP) inhibition—all hallmarks of BRCA1-deficient tumors. Together, these findings identify dynamic, DSB-associated chromatin reorganization as a critical modulator of BRCA1-dependent genome maintenance.


Journal of Biological Chemistry | 2009

Glucocorticoid Receptor Activation of the Ciz1-Lcn2 Locus by Long Range Interactions

Ofir Hakim; Sam John; Jian Qun Ling; Simon C. Biddie; Andrew R. Hoffman; Gordon L. Hager

The cellular response to glucocorticoid receptor (GR) activation involves a highly orchestrated series of regulatory actions influenced at multiple levels by a variety of mechanisms including the action of transcription factors and chromatin modifiers. Because the majority of GR binding sites (glucocorticoid-responsive elements (GREs)) are distant from promoters, it is likely that interactions at a distance play an important role in GR action. To determine whether long range chromosomal associations play a role in transcription regulation by GR, we utilized a chromosome conformation capture-based technique (associated chromosome trap) to identify unknown, remote sequences that interact with the GR-induced Lipocalin2 (Lcn2) gene. Our screen revealed that the Lcn2 GRE interacts with the Ciz1 gene, nearly 30 kb upstream. Ciz1 was subsequently found to be a novel GR-responsive gene. The GRE proximal to the Lcn2 promoter apparently functions to regulate both the Lcn2 gene and the distal Ciz1 gene. Using quantitative chromosome conformation capture, we find that a loop structure is organized between these two genes. This structure is hormone-independent and present only in cell types where the genes are active. The strong correlation between gene expression and loop structure in different cell lines suggests that high order interactions play a role in determining tissue-specific gene regulation.


Nature Structural & Molecular Biology | 2013

Cycles in spatial and temporal chromosomal organization driven by the circadian clock

Lorena Aguilar-Arnal; Ofir Hakim; Vishal R. Patel; Pierre Baldi; Gordon L. Hager; Paolo Sassone-Corsi

Dynamic transitions in the epigenome have been associated with regulated patterns of nuclear organization. The accumulating evidence that chromatin remodeling is implicated in circadian function prompted us to explore whether the clock may control nuclear architecture. We applied the chromosome conformation capture on chip technology in mouse embryonic fibroblasts (MEFs) to demonstrate the presence of circadian long-range interactions using the clock-controlled Dbp gene as bait. The circadian genomic interactions with Dbp were highly specific and were absent in MEFs whose clock was disrupted by ablation of the Bmal1 gene (also called Arntl). We establish that the Dbp circadian interactome contains a wide variety of genes and clock-related DNA elements. These findings reveal a previously unappreciated circadian and clock-dependent shaping of the nuclear landscape.


Genome Research | 2015

Dynamics of chromatin accessibility and long-range interactions in response to glucocorticoid pulsing

Diana A. Stavreva; Antoine Coulon; Songjoon Baek; Myong Hee Sung; Sam John; Lenka Stixová; Martina Tesikova; Ofir Hakim; Tina B. Miranda; Mary Hawkins; John A. Stamatoyannopoulos; Carson C. Chow; Gordon L. Hager

Although physiological steroid levels are often pulsatile (ultradian), the genomic effects of this pulsatility are poorly understood. By utilizing glucocorticoid receptor (GR) signaling as a model system, we uncovered striking spatiotemporal relationships between receptor loading, lifetimes of the DNase I hypersensitivity sites (DHSs), long-range interactions, and gene regulation. We found that hormone-induced DHSs were enriched within ± 50 kb of GR-responsive genes and displayed a broad spectrum of lifetimes upon hormone withdrawal. These lifetimes dictate the strength of the DHS interactions with gene targets and contribute to gene regulation from a distance. Our results demonstrate that pulsatile and constant hormone stimulations induce unique, treatment-specific patterns of gene and regulatory element activation. These modes of activation have implications for corticosteroid function in vivo and for steroid therapies in various clinical settings.


Nature Communications | 2016

Cajal bodies are linked to genome conformation

Qiuyan Wang; Iain A. Sawyer; Myong-Hee Sung; David Sturgill; Sergey P. Shevtsov; Gianluca Pegoraro; Ofir Hakim; Songjoon Baek; Gordon L. Hager; Miroslav Dundr

The mechanisms underlying nuclear body (NB) formation and their contribution to genome function are unknown. Here we examined the non-random positioning of Cajal bodies (CBs), major NBs involved in spliceosomal snRNP assembly and their role in genome organization. CBs are predominantly located at the periphery of chromosome territories at a multi-chromosome interface. Genome-wide chromosome conformation capture analysis (4C-seq) using CB-interacting loci revealed that CB-associated regions are enriched with highly expressed histone genes and U small nuclear or nucleolar RNA (sn/snoRNA) loci that form intra- and inter-chromosomal clusters. In particular, we observed a number of CB-dependent gene-positioning events on chromosome 1. RNAi-mediated disassembly of CBs disrupts the CB-targeting gene clusters and suppresses the expression of U sn/snoRNA and histone genes. This loss of spliceosomal snRNP production results in increased splicing noise, even in CB-distal regions. Therefore, we conclude that CBs contribute to genome organization with global effects on gene expression and RNA splicing fidelity.


Current Opinion in Cell Biology | 2010

3D shortcuts to gene regulation.

Ofir Hakim; Myong-Hee Sung; Gordon L. Hager

Recent technologies have allowed high-resolution genome-wide binding profiles of numerous transcription factors and other proteins. A widespread observation has emerged from studies in diverse mammalian systems: most binding events are located at great distances from gene promoters. It is becoming apparent that the traditional one-dimensional view of gene regulation via the proximal cis regulatory elements is over-simplified. True proximity and functional relevance can be revealed by studying the three-dimensional structure of the genome packaged inside the nucleus. Thus the spatial architecture of the genome has attracted a lot of interest and has intensified its significance in modern cell biology. Here we discuss current methods, concepts, and controversies in this rapidly evolving field.


Genome Research | 2013

Spatial congregation of STAT binding directs selective nuclear architecture during T-cell functional differentiation

Ofir Hakim; Myong-Hee Sung; Shingo Nakayamada; Ty C. Voss; Songjoon Baek; Gordon L. Hager

Higher-order genome organization shows tissue-specific patterns. However, functional relevance and the mechanisms shaping the genome architecture are poorly understood. Here we report a profound shift from promiscuous to highly selective genome organization that accompanies the effector lineage choice of differentiating T cells. As multipotent naive cells receive antigenic signals and commit to a T helper (Th) pathway, the genome-wide contacts of a lineage-specific cytokine locus are preferentially enriched for functionally relevant genes. Despite the establishment of divergent interactomes and global reprogramming of transcription in Th1 versus Th2, the overall expression status of the contact genes is surprisingly similar between the two lineages. Importantly, during differentiation, the genomic contacts are retained and strengthened precisely at DNA binding sites of the specific lineage-determining STAT transcription factor. In cells from the specific STAT knock-out mouse, the signature cytokine locus is unable to shed the promiscuous contacts established in the naive T cells, indicating the importance of genomic STAT binding. Altogether, the global aggregation of STAT binding loci from genic and nongenic regions highlights a new role for differentiation-promoting transcription factors in direct specification of higher-order nuclear architecture through interacting with regulatory regions. Such subnuclear environments have significant implications for efficient functioning of the mature effector lymphocytes.

Collaboration


Dive into the Ofir Hakim's collaboration.

Top Co-Authors

Avatar

Gordon L. Hager

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Myong-Hee Sung

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Rafael Casellas

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Wolfgang Resch

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arito Yamane

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Songjoon Baek

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ewy Mathe

Ohio State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge