Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ogobara K. Doumbo is active.

Publication


Featured researches published by Ogobara K. Doumbo.


Nature | 2002

The pathogenic basis of malaria

Louis H. Miller; Dror I. Baruch; Kevin Marsh; Ogobara K. Doumbo

Malaria is today a disease of poverty and underdeveloped countries. In Africa, mortality remains high because there is limited access to treatment in the villages. We should follow in Pasteurs footsteps by using basic research to develop better tools for the control and cure of malaria. Insight into the complexity of malaria pathogenesis is vital for understanding the disease and will provide a major step towards controlling it. Those of us who work on pathogenesis must widen our approach and think in terms of new tools such as vaccines to reduce disease. The inability of many countries to fund expensive campaigns and antimalarial treatment requires these tools to be highly effective and affordable.


Science | 2009

The Genetic Structure and History of Africans and African Americans

Sarah A. Tishkoff; Floyd A. Reed; Françoise R. Friedlaender; Christopher Ehret; Alessia Ranciaro; Alain Froment; Jibril Hirbo; Agnes A. Awomoyi; Jean-Marie Bodo; Ogobara K. Doumbo; Muntaser E. Ibrahim; Abdalla T. Juma; Maritha J. Kotze; Godfrey Lema; Jason H. Moore; Holly M. Mortensen; Thomas B. Nyambo; Sabah A. Omar; Kweli Powell; Gideon S. Pretorius; Michael W. Smith; Mahamadou A. Thera; Charles Wambebe; James L. Weber; Scott M. Williams

African Origins The modern human originated in Africa and subsequently spread across the globe. However, the genetic relationships among the diverse populations on the African continent have been unclear. Tishkoff et al. (p. 1035; see the cover, published online 30 April) provide a detailed genetic analysis of most major groups of African populations. The findings suggest that Africans represent 14 ancestral populations. Populations tend to be of mixed ancestry which documents historical migrations. The data mainly support but sometimes challenge proposed relationships between groups of self-identified ethnicity previously hypothesized on the basis of linguistic studies. The authors also examined populations of African Americans and individuals of mixed ancestry from Cape Town, documenting the variation and origins of admixture within these groups. A genetic study illuminates population history, as well as the relationships among and the origin of major language families. Africa is the source of all modern humans, but characterization of genetic variation and of relationships among populations across the continent has been enigmatic. We studied 121 African populations, four African American populations, and 60 non-African populations for patterns of variation at 1327 nuclear microsatellite and insertion/deletion markers. We identified 14 ancestral population clusters in Africa that correlate with self-described ethnicity and shared cultural and/or linguistic properties. We observed high levels of mixed ancestry in most populations, reflecting historical migration events across the continent. Our data also provide evidence for shared ancestry among geographically diverse hunter-gatherer populations (Khoesan speakers and Pygmies). The ancestry of African Americans is predominantly from Niger-Kordofanian (~71%), European (~13%), and other African (~8%) populations, although admixture levels varied considerably among individuals. This study helps tease apart the complex evolutionary history of Africans and African Americans, aiding both anthropological and genetic epidemiologic studies.


The New England Journal of Medicine | 2001

A MOLECULAR MARKER FOR CHLOROQUINE-RESISTANT FALCIPARUM MALARIA

Abdoulaye Djimde; Ogobara K. Doumbo; Joseph F. Cortese; Kassoum Kayentao; Safi N. Doumbo; Yacouba Diourte; Drissa Coulibaly; Alassane Dicko; Xin-Zhuan Su; Takashi Nomura; David A. Fidock; Thomas E. Wellems; Christopher V. Plowe

BACKGROUND Chloroquine-resistant Plasmodium falciparum malaria is a major health problem, particularly in sub-Saharan Africa. Chloroquine resistance has been associated in vitro with point mutations in two genes, pfcrt and pfmdr 1, which encode the P. falciparum digestive-vacuole transmembrane proteins PfCRT and Pgh1, respectively. METHODS To assess the value of these mutations as markers for clinical chloroquine resistance, we measured the association between the mutations and the response to chloroquine treatment in patients with uncomplicated falciparum malaria in Mali. The frequencies of the mutations in patients before and after treatment were compared for evidence of selection of resistance factors as a result of exposure to chloroquine. RESULTS The pfcrt mutation resulting in the substitution of threonine (T76) for lysine at position 76 was present in all 60 samples from patients with chloroquine-resistant infections (those that persisted or recurred after treatment), as compared with a base-line prevalence of 41 percent in samples obtained before treatment from 116 randomly selected patients (P<0.001), indicating absolute selection for this mutation. The pfmdr 1 mutation resulting in the substitution of tyrosine for asparagine at position 86 was also selected for, since it was present in 48 of 56 post-treatment samples from patients with chloroquine-resistant infections (86 percent), as compared with a base-line prevalence of 50 percent in 115 samples obtained before treatment (P<0.001). The presence of pfcrt T76 was more strongly associated with the development of chloroquine resistance (odds ratio, 18.8; 95 percent confidence interval, 6.5 to 58.3) than was the presence of pfmdr 1 Y86 (odds ratio, 3.2; 95 percent confidence interval, 1.5 to 6.8) or the presence of both mutations (odds ratio, 9.8; 95 percent confidence interval, 4.4 to 22.1). CONCLUSIONS This study shows an association between the pfcrt T76 mutation in P. falciparum and the development of chloroquine resistance during the treatment of malaria. This mutation can be used as a marker in surveillance for chloroquine-resistant falciparum malaria.


PLOS Medicine | 2011

A Research Agenda to Underpin Malaria Eradication

Pedro L. Alonso; Graham V. Brown; Myriam Arévalo-Herrera; Fred Binka; Chetan E. Chitnis; Frank H. Collins; Ogobara K. Doumbo; Brian Greenwood; B. Fenton Hall; Myron M. Levine; Kamini Mendis; Robert D. Newman; Christopher V. Plowe; Mario Henry Rodriguez; Robert E. Sinden; Laurence Slutsker; Marcel Tanner

Pedro Alonso and colleagues introduce the Malaria Eradication Research Agenda (malERA) initiative and the set of articles published in this PLoS Medicine Supplement that distill the research questions key to malaria eradication.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Blood group O protects against severe Plasmodium falciparum malaria through the mechanism of reduced rosetting

J. Alexandra Rowe; Ian Handel; Mahamadou A. Thera; Anne-Marie Deans; Kirsten E. Lyke; Abdoulaye K. Kone; Dapa A. Diallo; Ahmed Raza; Oscar Kai; Kevin Marsh; Christopher V. Plowe; Ogobara K. Doumbo; Joann M. Moulds

Malaria has been a major selective force on the human population, and several erythrocyte polymorphisms have evolved that confer resistance to severe malaria. Plasmodium falciparum rosetting, a parasite virulence phenotype associated with severe malaria, is reduced in blood group O erythrocytes compared with groups A, B, and AB, but the contribution of the ABO blood group system to protection against severe malaria has received little attention. We hypothesized that blood group O may confer resistance to severe falciparum malaria through the mechanism of reduced rosetting. In a matched case-control study of 567 Malian children, we found that group O was present in only 21% of severe malaria cases compared with 44–45% of uncomplicated malaria controls and healthy controls. Group O was associated with a 66% reduction in the odds of developing severe malaria compared with the non-O blood groups (odds ratio 0.34, 95% confidence interval 0.19–0.61, P < 0.0005, severe cases versus uncomplicated malaria controls). In the same sample set, P. falciparum rosetting was reduced in parasite isolates from group O children compared with isolates from the non-O blood groups (P = 0.003, Kruskal–Wallis test). Statistical analysis indicated a significant interaction between host ABO blood group and parasite rosette frequency that supports the hypothesis that the protective effect of group O operates through the mechanism of reduced P. falciparum rosetting. This work provides insights into malaria pathogenesis and suggests that the selective pressure imposed by malaria may contribute to the variable global distribution of ABO blood groups in the human population.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Impaired cytoadherence of Plasmodium falciparum-infected erythrocytes containing sickle hemoglobin

Rushina Cholera; Nathaniel J. Brittain; Mark R. Gillrie; Tatiana M. Lopera-Mesa; Seidina A. S. Diakite; Takayuki Arie; Michael Krause; Aldiouma Guindo; Abby Tubman; Hisashi Fujioka; Dapa A. Diallo; Ogobara K. Doumbo; May Ho; Thomas E. Wellems; Rick M. Fairhurst

Sickle trait, the heterozygous state of normal hemoglobin A (HbA) and sickle hemoglobin S (HbS), confers protection against malaria in Africa. AS children infected with Plasmodium falciparum are less likely than AA children to suffer the symptoms or severe manifestations of malaria, and they often carry lower parasite densities than AA children. The mechanisms by which sickle trait might confer such malaria protection remain unclear. We have compared the cytoadherence properties of parasitized AS and AA erythrocytes, because it is by these properties that parasitized erythrocytes can sequester in postcapillary microvessels of critical tissues such as the brain and cause the life-threatening complications of malaria. Our results show that the binding of parasitized AS erythrocytes to microvascular endothelial cells and blood monocytes is significantly reduced relative to the binding of parasitized AA erythrocytes. Reduced binding correlates with the altered display of P. falciparum erythrocyte membrane protein-1 (PfEMP-1), the parasites major cytoadherence ligand and virulence factor on the erythrocyte surface. These findings identify a mechanism of protection for HbS that has features in common with that of hemoglobin C (HbC). Coinherited hemoglobin polymorphisms and naturally acquired antibodies to PfEMP-1 may influence the degree of malaria protection in AS children by further weakening cytoadherence interactions.


The Journal of Infectious Diseases | 1997

Mutations in Plasmodium falciparum Dihydrofolate Reductase and Dihydropteroate Synthase and Epidemiologic Patterns of Pyrimethamine-Sulfadoxine Use and Resistance

Christopher V. Plowe; Joseph F. Cortese; Abdoulaye Djimde; Okey C. Nwanyanwu; William M. Watkins; Peter Winstanley; Jose G. Estrada Franco; René Mollinedo; Juan Carlos Avila; Jose Luis Cespedes; Darrick Carter; Ogobara K. Doumbo

To assess the relationship between mutations in Plasmodium falciparum dihydrofolate reductase (DHFR) and dihydropteroate synthase (DHPS) and clinical pyrimethamine-sulfadoxine resistance, polymerase chain reaction surveys and analyses for new mutations were conducted in four countries with increasing levels of pyrimethamine-sulfadoxine resistance: Mali, Kenya, Malawi, and Bolivia. Prevalence of mutations at DHFR codon 108 and a new mutation at DHPS 540 correlated with increased pyrimethamine-sulfadoxine resistance (P < .05). Mutations at DHFR 51, DHFR 59, and DHPS 437 correlated with resistance without achieving statistical significance. Mutations at DHFR 164 and DHPS 581 were common in Bolivia, where pyrimethamine-sulfadoxine resistance is widespread, but absent in African sites. Two new DHFR mutations, a point mutation at codon 50 and an insert at codon 30, were found only in Bolivia. DHFR and DHPS mutations occur in a progressive, stepwise fashion. Identification of specific sets of mutations causing in vivo drug failure may lead to the development of molecular surveillance methods for pyrimethamine-sulfadoxine resistance.


Nature Genetics | 2014

Reappraisal of known malaria resistance loci in a large multicenter study

Kirk A. Rockett; Geraldine M. Clarke; Kathryn Fitzpatrick; Christina Hubbart; Anna Jeffreys; Kate Rowlands; Rachel Craik; Muminatou Jallow; David J. Conway; Kalifa Bojang; Margaret Pinder; Stanley Usen; Fatoumatta Sisay-Joof; Giorgio Sirugo; Ousmane Toure; Mahamadou A. Thera; Salimata Konate; Sibiry Sissoko; Amadou Niangaly; Belco Poudiougou; V. Mangano; Edith C. Bougouma; Sodiomon B. Sirima; David Modiano; Lucas Amenga-Etego; Anita Ghansah; Kwadwo A. Koram; Michael D. Wilson; Anthony Enimil; Jennifer L. Evans

Many human genetic associations with resistance to malaria have been reported, but few have been reliably replicated. We collected data on 11,890 cases of severe malaria due to Plasmodium falciparum and 17,441 controls from 12 locations in Africa, Asia and Oceania. We tested 55 SNPs in 27 loci previously reported to associate with severe malaria. There was evidence of association at P < 1 × 10−4 with the HBB, ABO, ATP2B4, G6PD and CD40LG loci, but previously reported associations at 22 other loci did not replicate in the multicenter analysis. The large sample size made it possible to identify authentic genetic effects that are heterogeneous across populations or phenotypes, with a striking example being the main African form of G6PD deficiency, which reduced the risk of cerebral malaria but increased the risk of severe malarial anemia. The finding that G6PD deficiency has opposing effects on different fatal complications of P. falciparum infection indicates that the evolutionary origins of this common human genetic disorder are more complex than previously supposed.


Nature Genetics | 2009

Genome-wide and fine-resolution association analysis of malaria in West Africa.

Muminatou Jallow; Yik-Ying Teo; Kerrin S. Small; Kirk A. Rockett; Panos Deloukas; Taane G. Clark; Katja Kivinen; Kalifa Bojang; David J. Conway; Margaret Pinder; Giorgio Sirugo; Fatou Sisay-Joof; Stanley Usen; Sarah Auburn; Suzannah Bumpstead; Susana Campino; Alison J. Coffey; Andrew Dunham; Andrew E. Fry; Angela Green; Rhian Gwilliam; Sarah Hunt; Michael Inouye; Anna Jeffreys; Alieu Mendy; Aarno Palotie; Simon Potter; Jiannis Ragoussis; Jane Rogers; Kate Rowlands

We report a genome-wide association (GWA) study of severe malaria in The Gambia. The initial GWA scan included 2,500 children genotyped on the Affymetrix 500K GeneChip, and a replication study included 3,400 children. We used this to examine the performance of GWA methods in Africa. We found considerable population stratification, and also that signals of association at known malaria resistance loci were greatly attenuated owing to weak linkage disequilibrium (LD). To investigate possible solutions to the problem of low LD, we focused on the HbS locus, sequencing this region of the genome in 62 Gambian individuals and then using these data to conduct multipoint imputation in the GWA samples. This increased the signal of association, from P = 4 × 10−7 to P = 4 × 10−14, with the peak of the signal located precisely at the HbS causal variant. Our findings provide proof of principle that fine-resolution multipoint imputation, based on population-specific sequencing data, can substantially boost authentic GWA signals and enable fine mapping of causal variants in African populations.


Nature Immunology | 2012

Therapeutic blockade of PD-L1 and LAG-3 rapidly clears established blood-stage Plasmodium infection

Noah S. Butler; Jacqueline Moebius; Lecia Pewe; Boubacar Traore; Ogobara K. Doumbo; Lorraine T. Tygrett; Thomas J. Waldschmidt; Peter D. Crompton; John T. Harty

Infection of erythrocytes with Plasmodium species induces clinical malaria. Parasite-specific CD4+ T cells correlate with lower parasite burdens and severity of human malaria and are needed to control blood-stage infection in mice. However, the characteristics of CD4+ T cells that determine protection or parasite persistence remain unknown. Here we show that infection of humans with Plasmodium falciparum resulted in higher expression of the inhibitory receptor PD-1 associated with T cell dysfunction. In vivo blockade of the PD-1 ligand PD-L1 and the inhibitory receptor LAG-3 restored CD4+ T cell function, amplified the number of follicular helper T cells and germinal-center B cells and plasmablasts, enhanced protective antibodies and rapidly cleared blood-stage malaria in mice. Thus, chronic malaria drives specific T cell dysfunction, and proper function can be restored by inhibitory therapies to enhance parasite control.

Collaboration


Dive into the Ogobara K. Doumbo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Issaka Sagara

University of the Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kassoum Kayentao

University of the Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge