Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Oguz Dogan is active.

Publication


Featured researches published by Oguz Dogan.


ASME 2014 International Mechanical Engineering Congress and Exposition | 2014

The Investigation of Stress Distribution on the Tractor Clutch Finger Mechanism by Using Finite Element Method

Fatih Karpat; Oguz Dogan; Celalettin Yuce; Necmettin Kaya; G. Cengiz

In recent years, there has been an increasing demand for tractor usage for agricultural activities in the world. Tractors are an integral part of mechanization and have a crucial role to play to enhance agricultural productivity. They are used for many kinds of farm work, under various soil and field conditions. It provides agricultural activities in challenging conditions by using several farming equipment. During the operations, tractors have to efficiently transfer power from the engine to the drive wheels and PTO through a transmission. Tractor clutch is the essential element in this system. During the torque transmission, loads which occur on the clutch components cause damages. In many cases, especially PTO clutch finger mechanism is fractured under the torque transmission.In this study, finger mechanism, which used in tractor clutch PTO disc, is investigated. Finite element analyses were performed for two different thicknesses (3.5 and 4 mm) of the finger mechanism. Stress and deformation values which occur during the transfer of power in a safe manner are investigated for these thicknesses. The finger mechanism CAD models were created using CATIA V5 and then imported into ANSYS for static finite element analyses. As a result of the analyses, approximately 13% stress decreasing was observed with the increment of the 0.5 mm for the finger thicknesses. Results from the analyses provide an accurate prediction of the material yielding and load path distribution on the PTO clutch finger. To verify the analyses results prototype PTO finger mechanism was manufactured and was conducted bench tests. Consequently, a good correlation was achieved between finite element model and test results.Copyright


ASME 2014 International Mechanical Engineering Congress and Exposition | 2014

Effect of Rim Thickness on Tooth Root Stress and Mesh Stiffness of Internal Gears

Fatih Karpat; B. Engin; Oguz Dogan; Celalettin Yuce; Tufan Gürkan Yılmaz

In recent years, internal gears are used commonly in a number of automotive and aerospace applications especially in planetary gear drives. Planetary gears have many advantages such as compactness, large torque-to-weight ratio, large transmission ratios, reduced noise and vibrations. Although internal gears have many advantages, there are not enough studies on it. Designing an internal gear mechanism includes two important parameters. The gear mesh stiffness which is the main excitation source of the system. In this paper, 2D gear models are developed in order to compute gear mesh stiffness for various rim thicknesses and different rim shapes of the internal gear design. Effects of root stress with varying rim thickness and some tooth parameters are investigated by using 2D gear models. The stress calculated according to ISO 6336 and the stresses calculated against FEM are compared. These results are well-matched. It is observed that when the rim thicknesses are increased, both the maximum bending stresses and gear mesh stiffness are decreased considerably.Copyright


Advances in Mechanical Engineering | 2017

An improved numerical method for the mesh stiffness calculation of spur gears with asymmetric teeth on dynamic load analysis

Fatih Karpat; Oguz Dogan; Celalettin Yuce; Stephen Ekwaro-Osire

Gears are one of the most crucial parts of power transmission systems in various industrial applications. Recently, there emerged a need to design gear drivers due to the rising performance requirements of various power transmission applications, such as higher load-carrying capacity, higher strength, longer working life, lower cost, and higher velocity. Due to their excellent properties, gears with asymmetric teeth have been designed to obtain better performance in applications. As the rotation speed of the gear transmission increases, the dynamic behavior of the gears has become a subject of growing interest. The most important contributing factor of dynamic behavior is the stiffness of the teeth, which changes constantly throughout the operation. The calculation of gear stiffness is important for determining the load distribution between the gear teeth when two sets of teeth are in contact. The primary objective of this article is to develop a new approach to calculate gear mesh stiffness for asymmetric gears. With this aim in mind, single tooth stiffness was calculated in the first stage of the study using a finite element method. This study presents crucial results to gear researchers for understanding spur gears with involute asymmetric teeth, and the results will provide researchers with input data for dynamic analysis.


ASME 2015 International Mechanical Engineering Congress and Exposition | 2015

Optimum Design of Tractor Clutch PTO Finger by Using Topology and Shape Optimization

Oguz Dogan; Fatih Karpat; Necmettin Kaya; Celalettin Yuce; Mehmet Onur Genç; Nurettin Yavuz

Tractors are one of the most important agricultural machinery in the world. They provide agricultural activities in challenging conditions by using various agricultural machineries which are added on them. Therefore, there has been a rising demand for tractor use for agricultural activities. During the power transmission, tractor clutches are exposed to high static and cyclic loading directly. Thus, most of clutch parts fail before completing their design life which is under 106 cycles. Especially, because of the high stress, there are a number of fractures and breakages are observed around the pin area of the finger mechanisms. Due to these reasons, it is necessary to re-design these fingers by using modern optimization techniques and finite element analysis.This paper presents an approach for analysis and re-designs process of tractor clutch PTO finger. Firstly, the original designs of the PTO fingers are analyzed by using finite element analysis. Static structural analyses are applied on these fingers by using ANSYS static structural module. The boundary conditions are determined according to the data from the axial fatigue test bench. Afterwards, the stress-life based fatigue analyses are performed with respect to Goodman criterion. It is seem that the original design of the PTO finger, failed before the design life. Hence, the PTO finger is completely re-designed by using topology and shape optimization methods. Topology optimization is used to find the optimum material distribution of the PTO fingers. Topology optimization is performed in solidThinking Inspire software. The precise dimensions of the PTO fingers are determined by using shape optimization and response surface methodology. Two different design parameters, which are finger thickness and height, are selected for design of experiment and 15 various cases are analyzed. By using DOE method three different equations are obtained which are maximum stresses, mass, and displacement depending on the selected design parameters. These equations are used in the optimization as objective and constraint equations in MATLAB. The results indicate that the proposed models predict the responses adequately within the limits of the parameters being used. The final dimensions of the fingers are determined after shape optimization. The new designs of the PTO fingers are re-analyzed in terms of static and fatigue analysis. The new design of the PTO finger passed the analysis successfully. As a result of the study, the finger mass is increased 7% but it is quite small. Maximum Equivalent Von-Misses stress reduction of 25.3% is achieved. Fatigue durability of the PTO finger is improved 53.2%. The rigidity is improved up to 27.9% compared to the initial design. The optimal results show that the developed method can be used to design a durable, low manufacturing cost and lightweight clutch parts.Copyright


ASME 2015 International Mechanical Engineering Congress and Exposition | 2015

Design and Analysis of Internal Gears With Different Rim Thickness and Shapes

Fatih Karpat; Stephen Ekwaro-Osire; Tufan Gürkan Yılmaz; Oguz Dogan; Celalettin Yuce

In recent years, thanks to their significant advantages such as compactness, large torque-to-weight ratio, large transmission ratios, reduced noise and vibrations, internal gears have been used in automotive and aerospace applications especially in planetary gear drives. Although internal gears have a number of advantages, they have not been studied sufficiently. Internal gears are manufactured by pinion type cutters which are nearly identical with pinion gear except the addendum factor which is 1.25 instead of 1. The tip geometry of a pinion type cutter which determines the fillet of internal gear tooth can be sharp or rounded. In this study, the design of internal gears were investigated by using a traditional approach. Mathematical equations of pinion type cutter were obtained by using differential geometry, then the equations of internal gear tooth were derived accurately by using coordinate transformations and relative motion between the pinion type cutter and internal gear blank. A computer program was generated to attain points of internal gear teeth and three dimensional design of complete gear. 20°-20° were used as pressure angle. To find optimum internal gear geometry, different rim thicknesses and shapes are tried out for finite element analyses. There were several parameters that were shown to effect the performance of the internal gears, with tooth stiffness being the most significant parameter. Tooth stiffness was also vitally influence the dynamic analysis. In order to compute gear tooth stiffness of the internal gear with various rim thicknesses and shapes, finite element analysis was used. A static analysis was performed to assess the gear bending stress and tooth displacement. Tetrahedral element type was selected for meshing. The internal gear outer ring was fixed and the force of 2500 N was applied on the tooth. According to the displacement values from the analysis internal gear tooth stiffness were calculated individually. Additionally, the effect of root bending stress with varying rim thickness, shapes, and root radius were investigated. The bending stresses were calculated according to ISO 6336 and using finite element analysis were shown to be in good agreement. It was shown that when the rim thickness and fillet radius were increased, the maximum bending stresses decreased considerably. As rim thickness was increased, the maximum bending stress decreased nearly 23%. It was also shown that as the fillet radius decreased, the maximum bending stress increased, whereas the rim stresses slightly changed. As the fillet radius was decreased, the maximum bending stress increased nearly 10%. It was also observed that when rim thickness was increased, the stress on the rim was decreased, whereas tooth stiffness was increased. However, fillet radius had no visible effect both on rim stress and tooth stiffness. Furthermore, it was shown that the rim shape had significant effect on rim stress.Copyright


ASME 2014 International Mechanical Engineering Congress and Exposition | 2014

A Novel Method for Calculation Gear Tooth Stiffness for Dynamic Analysis of Spur Gears With Asymmetric Teeth

Fatih Karpat; Oguz Dogan; Stephen Ekwaro-Osire; Celalettin Yuce

Recently, there have been a number of research activities on spur gears with asymmetric teeth. The benefits of asymmetric gears are: higher load capacity, reduced bending and contact stress, lower weight, lower dynamic loads, reduced wear depths on tooth flank, higher reliability, and higher efficiency. Each of the benefits can be obtained through asymmetric teeth designed correctly. Gears operate in several conditions, such as inappropriate lubrication, excessive loads and installation problems. In working conditions, damage can occur in tooth surfaces due to excessive loads and unsuitable operating conditions. One of the important parameters of the tooth is stiffness, which is found to be reduced proportionally to the severity of the defect by asymmetric tooth design as described in this paper. The estimation of gear stiffness is an important parameter for determining loads between the gear teeth when two sets of teeth are in contact. In this paper, a 2-D tooth model is developed for finite elements analysis. A novel formula is derived from finite element results in order to estimate tooth stiffness depending on the tooth number and pressure angle on the drive side. Tooth stiffness for spur gears with asymmetric teeth is calculated and the results were compared with well known equations in literature.Copyright


ASME 2014 International Mechanical Engineering Congress and Exposition | 2014

Experimental Verification and Finite Element Analysis of Automotive Door Hinge

S. Doğan; C. Guven; Fatih Karpat; Tufan Gürkan Yılmaz; Oguz Dogan

In automotive industry, achieving lightweight, low-cost, reliable and more accurate product design are the most important goal. Using Finite Element Analysis (FEA) is an important tool for achieving this since it decreases prototyping cost and time. Cars have different door system and one of the important part of them is door hinge. An automotive door hinge is mainly composed of three elements, fixed part, mobile part and hinge pin that fasten fixed part and mobile parts. Manufacturers have to perform tests and analysis for ensuring international and customer requirements.In this study, FEA results are compared with static and dynamic test results of front door hinge of automotive according to International specifications. The agreement between the computed and measured values is shown.Copyright


Journal of Mechanical Science and Technology | 2016

A novel design procedure for tractor clutch fingers by using optimization and response surface methods

Oguz Dogan; Fatih Karpat; Celalettin Yuce; Necmettin Kaya; Nurettin Yavuz; Hasan Sen


international conference on mechanical and aerospace engineering | 2018

Experimental Investigation of the Impact Resistance of Involute Spur Gears

Oguz Dogan; Fatih Karpat; Celalettin Yucem; Onur Can Kalay


Transactions of The Canadian Society for Mechanical Engineering | 2018

Design and development of tractor clutch using combined field and bench tests

Fatih Karpat; Celalettin Yuce; Oguz Dogan; Mehmet Onur Genç; Necmettin Kaya

Collaboration


Dive into the Oguz Dogan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge