Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Oh-Heon Kwon.
Journal of the Korean Society of Safety | 2013
Jung-Hoon Kwak; Ji-Woong Kang; Oh-Heon Kwon
Blades of horizontal axis are nowadays made of composite materials. Generally, composite materials satisfy design provides lower weight and good stiffness, while laminate composites have often damages as like the delamination and cracks at the interface of laminates. The box spar and tail parts of a blade are composed of the CFRP/GFRP hybrid laminate composites. However, delamination and the interfacial crack often occur in the interface of CFRP/GFRP hybrid laminate composites under the mixed mode fracture condition, especially mode I and mode II. Therefore, there is a need for the evaluation of the mixed mode fracture behavior during the delamination of CFRP/GFRP hybrid laminates. This study shows the experimental results for the delamination fracture toughness in CFRP/GFRP hybrid laminate composites. Fracture toughness experiments and estimation are performed by using DMMB(Dissimilar mixed mode bending) specimen. The materials used in the test are a commercial woven type CFRP(Carbon fiber reinforced plastic) prepreg(CF3327) and UD type GFRP(Glass fiber reinforced plastic) prepreg(HD224A). A CFRP/GFRP hybrid laminate composite is composed by the 10 plies CFRP and GFRP prepreg for DMMB. A thickness of CFRP and GFRP layer is 2.5mm and 3.0mm, respectively. Also the fulcrum location which is a loading parameter is changed from 80 to 100mm on the specimen of length 120mm because it defines the ratio of mode I to mode II. In this study, the effects of the fulcrum location are evaluated in the viewpoint of energy release rate in mode I and mode II contribution. The results show that the delamination crack initiates at higher displacement and lower load according to the increase of the fulcrum location ratio. And the variation of the energy release rate for mode I and II contributions for the mode mixity are shown.
Transactions of The Korean Society of Mechanical Engineers A | 2004
Oh-Heon Kwon; Yu-Seong Yun
In recent year, composite materials are increasingly used in various fields of engineering because of its superior properties. The relationships of between crack propagation and AE characteristics fer CFRP plain woven laminate composites are examined. AE signals are measured during the fracture behavior tests. The purpose of study is to estimate the crack extension behavior with AE characteristics according to the load orientation fur plain woven CFRP laminate composite.
Journal of the Korean Society of Safety | 2014
Yu-Seong Yun; Da-Jin-Sol Kim; Oh-Heon Kwon
Recently many efforts and researches have been done to cope with industrial facilities that require a low energy machines due to the gradual depletion of the natural resources. The fiber-reinforced composite materials in general have good properties and have the proper mechanical properties according to the change of the ply sequences and fiber distribution types. However, in the fiber-reinforced composite material, there are several problems, including fiber breaking, peeling, layer lamination, fiber cracking that can not be seen from the metallic material. Particularly, the fracture and delamination are likely to be affected by the thickness of the stacking laminates when the bi-material laminated structure is subjected to a load of the mixed mode. In this study, we investigated the effect of the thickness ratio of the difference in the CFRP/GFRP bi-material laminate composites by measuring the cracking behavior and the AE characteristics in a mixed mode loading, which may be generated in the actual structure. The results show that the thickness of the CFRP becomes more thick, the mode I energy release rate becomes a larger, and also the influence of mode I is greater than that of mode II. In addition, AE amplitude which shows the level of the damage in the structure was obtained the more damage in the CFRP with the thin thickness.
Journal of the Korean Society of Safety | 2013
Oh-Heon Kwon; Woo-Deok Kwon; Ji-Woong Kang
Abstract : Considering the wind power system and the rotor blades which are composed of much technology, the wind power blade would be the most dangerous part because it revolves at high speed and weighs about dozens of tons, if the accident happens. Therefore, the light weight composite materials have been replacing as substitutional materials. The object of this study is to examine the delamination and damage for CFRP/GFRP hybrid composite that is used for strength improvement of a wind power blade. The influence of the initial crack length and fiber orientation for the interlaminar delamination was exposed for the blade safety. Plain woven CFRP instead of GFRP was inserted into the layer of the box spar for improving the strength and blade life. DCB(Double Cantilever Beam) specimen was used for evaluating fracture toughness and damage evaluation of interlaminar delamination. The material used in the experiment is a commercial material known as CF 3327 EPC in plain woven carbon prepreg(Hankuk Carbon Co.) and UD glass fiber prepreg(Hyundai Fiber Co.). From the results, crack growth rate is not so different according to the variation of the initial crack length. ModeⅠ interlamainar fracture toughness of fiber direction 0is higher than that of 45. Interlaminar fracture has an effect on fiber direction and K decreased with lower value according to increasing initial crack length. Also energy release rate fracture toughness was evaluated because CFRP/GFRP hybrid composite with a different thickness is under the mixed mode loading condition. The interlaminar fracture was almost governed by mode I fracture even though the mixed mode.
Transactions of The Korean Society of Mechanical Engineers A | 2010
Sang-Gu Jeon; Hoon-Sik Jang; Oh-Heon Kwon; Seung-Hoon Nahm
It is important to measure the mechanical properties of nanostructures because they are required to determine the lifetime and reliability of nanodevices developed for various fields. In this study, tensile tests for a multi-walled carbon nanotube (MWCNT) and a ZnO nanorod were performed in a scanning electron microscope (SEM). The force sensor was a cantilever type and was mounted in front of a nanomanipulator placed in the chamber. The nanomanipulator was controlled using a joystick and personal computer. The nanostructures dispersed on the cut area of a transmission electron microscope (TEM) grid were gripped with the force sensor by exposing an electron beam in the SEM; the tensile tests were the performed. The in situ tensile loads of the nanostructure were obtained. After the tensile test, the cross-sectional areas of the nanostructures were observed by TEM and SEM. Based on the TEM and SEM results, the elastic modulus of the MWCNT and ZnO nanorod were calculated to be 0.98 TPa and 55.85 GPa, respectively.
Proceedings of the International Conference on ANDE 2007 | 2008
Ji-Woong Kang; Oh-Heon Kwon
The effective utilization of the strength and stiffness of the fiber reinforced MMCs depends on efficient load transfers from the matrix to fibers through the interfacial region. However, during the fabrication and afterward utilization of composites, so many numbers of micro crack may extend, especially at the interface, even before any load has been applied. Thus, in this study, the interfacial perpendicular crack behavior and stress state of the unidirectional fiber reinforced MMCs are investigated by using FEA under the transverse loading. The fiber/matrix interface is modeled as multi thin layer with different linear material properties. The behavior of perpendicular crack to the interface according to the change of the interface characteristics and thickness are evaluated.
Journal of Nanoscience and Nanotechnology | 2011
Hoon-Sik Jang; Sang Koo Jeon; Oh-Heon Kwon; Seung Hoon Nahm
Journal of the Korean Society of Safety | 2002
Oh-Heon Kwon; Seong-Seok Go; Yu-Seong Yun
Power System Engineering | 2015
Seok-Su Kim; Ji-Woong Kang; Oh-Heon Kwon
Journal of Nanoscience and Nanotechnology | 2012
Hoon-Sik Jang; Sang Koo Jeon; Oh-Heon Kwon; Seok Cheol Lee; Chang-Soo Kim; Seung Hoon Nahm