Ola Bratteli
Australian National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ola Bratteli.
Journal of Functional Analysis | 1982
Ola Bratteli; Frederick M. Goodman; Palle E. T. Jorgensen
Let G be a compact abelian group, and τ an action of G on a C∗-algebra U, such that Uτ(γ)Uτ(γ)∗ = Uτ(0) Uτ for all γ ϵ G, where Uτ(γ) is the spectral subspace of U corresponding to the character γ on G. Derivations δ which are defined on the algebra UF of G-finite elements are considered. In the special case δ¦Uτ = 0 these derivations are characterized by a cocycle on G with values in the relative commutant of Uτ in the multiplier algebra of U, and these derivations are inner if and only if the cocycles are coboundaries and bounded if and only if the cocycles are bounded. Under various restrictions on G and τ properties of the cocycle are deduced which again give characterizations of δ in terms of decompositions into generators of one-parameter subgroups of τ(G) and approximately inner derivations. Finally, a perturbation technique is devised to reduce the case δ(UF) ⊆ UF to the case δ(UF) ⊆ UF and δ¦Uτ = 0. This is used to show that any derivation δ with D(δ) = UF is wellbehaved and, if furthermore G = T1 and δ(UF) ⊆ UF the closure of δ generates a one-parameter group of ∗-automorphisms of U. In the case G = Td, d = 2, 3,… (finite), and δ(UF) ⊆ UF it is shown that δ extends to a generator of a group of ∗-automorphisms of the σ-weak closure of U in any G-covariant representation.
Journal of Geometric Analysis | 1995
Charles J. K. Batty; Ola Bratteli; Palle E. T. Jorgensen; Derek W. Robinson
We establish that heat diffusion with periodic conductivity is governed by two scales. The small time diffusion is described by the geodesic distance but the large time behaviour is dictated by the distance associated with an homogenized system obtained by a suitable averaging process. Our methods are quite general and apply to diffusion on a stratified Lie group.
Mathematische Zeitschrift | 1999
Ola Bratteli; Palle E. T. Jorgensen; Derek W. Robinson
Abstract. We demonstrate that the structure of complex second-order strongly elliptic operators H on
Communications in Mathematical Physics | 1982
Ola Bratteli; Palle E. T. Jorgensen
{\bf R}^d
Journal of Functional Analysis | 1988
Ola Bratteli; Frederick M. Goodman; Palle E. T. Jorgensen; Derek W. Robinson
with coefficients invariant under translation by
Journal of Functional Analysis | 1989
Ola Bratteli; Palle E. T. Jorgensen
{\bf Z}^d
Archive | 1997
Ola Bratteli; Derek W. Robinson
can be analyzed through decomposition in terms of versions
Archive | 1979
Ola Bratteli; Derek W. Robinson
H_z
Archive | 1997
Ola Bratteli; Palle E. T. Jorgensen; Shifts Isometries
,
Archive | 1979
Ola Bratteli; Derek W. Robinson
z\in{\bf T}^d