Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ola Eiken is active.

Publication


Featured researches published by Ola Eiken.


Medicine and Science in Sports and Exercise | 2000

Hyperbaric oxygen therapy does not affect recovery from delayed onset muscle soreness

Igor B. Mekjavic; Jason A. Exner; Per A. Tesch; Ola Eiken

PURPOSE This study investigated whether hyperbaric oxygen therapy (HBOT) improves recovery after exercise-induced muscle injury. METHODS Healthy male subjects (N = 24) were randomly assigned to either a placebo group or a HBOT group. Subjects were tested for maximal isometric strength (preexercise) of their right elbow flexors. Each subject then completed a high-force eccentric workout of the elbow flexor muscle group to induce delayed onset muscle soreness (DOMS). On the seven successive days after this workout, the subjects were exposed to a hyperbaric environment of 2.5 ATA for 60 min, inspiring either a normoxic mixture (P(I)O2 = 0.2 ATA; placebo group) or a hyperoxic gas mixture (P(I)O2 = 2.5 ATA; HBOT group). Before the eccentric workout and daily for the next 10 d, measurements were obtained regarding: maximal isometric muscle strength of the elbow flexor muscles, right upper arm circumferences, and rating of the perceived muscle soreness. RESULTS Isometric strength decreased significantly from preexercise levels of 25.1 +/- 3.8 kp to postexercise levels of 12.0 +/- 4.6 kp, for the HBOT group, and from 24.6 +/- 3.4 kp to 12.5 +/- 3.7 kp, respectively, for the placebo group. Over the 10-d recovery period, there was no difference in the rate of recovery of muscle strength between the two groups. Perceived soreness peaked at about 48 h after exercise with no difference between groups. Also, the exercise-induced increases in arm circumference were similar in the two groups. CONCLUSIONS These results indicate that HBOT is not an effective therapy for the treatment of DOMS.


Acta Physiologica | 2014

Expression changes in human skeletal muscle miRNAs following 10 days of bed rest in young healthy males

Tadeja Režen; Anja Kovanda; Ola Eiken; Igor B. Mekjavic; Boris Rogelj

Studies in humans show global changes in mRNA and protein expression occur in human skeletal muscle during bed rest. As microRNAs are important regulators of expression, we analysed the global microRNA expression changes in human muscle following 10 days of sustained bed rest, with the rationale that miRNAs play key roles in atrophy of skeletal muscle.


Clinical Physiology and Functional Imaging | 2003

Relation between the elastic properties and intima-media thickness of the common carotid artery.

Tomas Jogestrand; Ola Eiken; Jacek Nowak

The purpose of the study was to describe the relation between wall elasticity and intima‐media thickness in the human carotid artery prior to the development of atherosclerotic plaques. Fifty‐eight apparently healthy men, aged 42–65 years (mean 55 years), without symptoms of cardiovascular disease were studied. Thickness and elastic properties of the common carotid artery wall were assessed using ultrasonography and non‐invasive arterial pressure measurements. The relation between the calculated intima‐media area and the pressure strain elastic modulus was positive and statistically significant on the right but not on the left side. No statistically significant relations were found between the calculated intima‐media area and the stiffness or between the intima‐media thickness and the elastic modulus or stiffness on either side. Thus, the relations between the common carotid artery intima‐media thickness/calculated intima‐media area and the common carotid artery elastic modulus/stiffness are weak. In regions without atherosclerotic plaques, the elastic properties of the human carotid artery wall do not seem to be influenced by the wall thickness in an important way.


Applied Physiology, Nutrition, and Metabolism | 2014

Whole body and regional body composition changes following 10-day hypoxic confinement and unloading-inactivity.

Tadej Debevec; Adam C. McDonnell; Ian A. Macdonald; Ola Eiken; Igor B. Mekjavic

Future planetary habitats will expose inhabitants to both reduced gravity and hypoxia. This study investigated the effects of short-term unloading and normobaric hypoxia on whole body and regional body composition (BC). Eleven healthy, recreationally active, male participants with a mean (SD) age of 24 (2) years and body mass index of 22.4 (3.2) kg·m(-2) completed the following 3 10-day campaigns in a randomised, cross-over designed protocol: (i) hypoxic ambulatory confinement (HAMB; FIO2 = 0.147 (0.008); PIO2 = 93.8 (0.9) mm Hg), (ii) hypoxic bed rest (HBR; FIO2 = 0.147 (0.008); PIO2 = 93.8 (0.9) mm Hg), and (iii) normoxic bed rest (NBR; FIO2 = 0.209; PIO2 = 133.5 (0.7) mm Hg). Nutritional requirements were individually precalculated and the actual intake was monitored throughout the study protocol. Body mass, whole body, and regional BC were assessed before and after the campaigns using dual-energy X-ray absorptiometry. The calculated daily targeted energy intake values were 2071 (170) kcal for HBR and NBR and 2417 (200) kcal for HAMB. In both HBR and NBR campaigns the actual energy intake was within the targeted level, whereas in the HAMB the intake was lower than targeted (-8%, p < 0.05). Body mass significantly decreased in all 3 campaigns (-2.1%, -2.8%, and -2.0% for HAMB, HBR, and NBR, respectively; p < 0.05), secondary to a significant decrease in lean mass (-3.8%, -3.8%, -4.3% for HAMB, HBR, and NBR, respectively; p < 0.05) along with a slight, albeit not significant, increase in fat mass. The same trend was observed in the regional BC regardless of the region and the campaign. These results demonstrate that, hypoxia per se, does not seem to alter whole body and regional BC during short-term bed rest.


Frontiers in Physiology | 2016

The Effect of Normobaric Hypoxic Confinement on Metabolism, Gut Hormones, and Body Composition

Igor B. Mekjavic; M. Amon; Roger Kölegård; Stylianos N. Kounalakis; Liz Simpson; Ola Eiken; Michail E. Keramidas; Ian A. Macdonald

To assess the effect of normobaric hypoxia on metabolism, gut hormones, and body composition, 11 normal weight, aerobically trained (O2peak: 60.6 ± 9.5 ml·kg−1·min−1) men (73.0 ± 7.7 kg; 23.7 ± 4.0 years, BMI 22.2 ± 2.4 kg·m−2) were confined to a normobaric (altitude ≃ 940 m) normoxic (NORMOXIA; PIO2 ≃ 133.2 mmHg) or normobaric hypoxic (HYPOXIA; PIO was reduced from 105.6 to 97.7 mmHg over 10 days) environment for 10 days in a randomized cross-over design. The wash-out period between confinements was 3 weeks. During each 10-day period, subjects avoided strenuous physical activity and were under continuous nutritional control. Before, and at the end of each exposure, subjects completed a meal tolerance test (MTT), during which blood glucose, insulin, GLP-1, ghrelin, peptide-YY, adrenaline, noradrenaline, leptin, and gastro-intestinal blood flow and appetite sensations were measured. There was no significant change in body weight in either of the confinements (NORMOXIA: −0.7 ± 0.2 kg; HYPOXIA: −0.9 ± 0.2 kg), but a significant increase in fat mass in NORMOXIA (0.23 ± 0.45 kg), but not in HYPOXIA (0.08 ± 0.08 kg). HYPOXIA confinement increased fasting noradrenaline and decreased energy intake, the latter most likely associated with increased fasting leptin. The majority of all other measured variables/responses were similar in NORMOXIA and HYPOXIA. To conclude, normobaric hypoxic confinement without exercise training results in negative energy balance due to primarily reduced energy intake.


European Journal of Applied Physiology | 1993

Autonomic nervous control of heart rate during blood-flow restricted exercise in man.

J. C. L. Sun; Ola Eiken; Igor B. Mekjavic

SummaryPower spectra of instantaneous heart rate (fc) allows the estimation of the contribution of sympathetic and parasympathetic control of fc during steady-state conditions. The present study was designed to examine autonomic control of fc as influenced by normal dynamic leg exercise and by ischemic leg exercise. Eight subjects performed supine cycle ergometry at 30% of their control peak work rate, with and without blood-flow restriction. Blood-flow restriction was induced by exposing the exercising legs to a supra-atmospheric pressure of 6.7 kPa (leg positive pressure; LPP). The exercise responses of arterial pressure and fc increased (P<0.05) by LPP exposure. The exaggerated pressor response may be attributed to a chemoreflex drive originating in the ischemic muscles. Exposure to LPP during exercise also produced a significant decrease in parasympathetically mediated high frequency (HF; 0.15-1.00 Hz) fluctuation of fc, as indicated by a decrease (P<0.05) in percent HF power compared to the control exercise level. During LPP exercise, the sympathetically mediated very low frequency (VLF; 0–0.05 Hz) fluctuation of fc increased, as indicated by an increase (P<0.05) in percent VLF power above control exercise levels. Both LPP and control exercise conditions decreased (P<0.05) power in all frequency ranges of interest compared to their respective resting conditions. The results suggest that the increase in fc associated with normal dynamic exercise was mediated predominantly by parasympathetic withdrawal, whereas the exaggerated fc response during ischemic exercise resulted from a combination of cardiac sympathetic drive and parasympathetic withdrawal. The increase in sympathetic activity is attributable to a muscle chemoreflex drive, which also may have attenuated parasympathetic activity by reciprocal inhibition. Alternatively, augmented central command mediated parasympathetic withdrawal during ischemic exercise.


American Journal of Physiology-heart and Circulatory Physiology | 2016

PlanHab: hypoxia exaggerates the bed-rest-induced reduction in peak oxygen uptake during upright cycle ergometry.

Michail E. Keramidas; Roger Kölegård; Igor B. Mekjavic; Ola Eiken

The study examined the effects of hypoxia and horizontal bed rest, separately and in combination, on peak oxygen uptake (V̇o2 peak) during upright cycle ergometry. Ten male lowlanders underwent three 21-day confinement periods in a counterbalanced order: 1) normoxic bed rest [NBR; partial pressure of inspired O2 (PiO2 ) = 133.1 ± 0.3 mmHg]; 2) hypoxic bed rest (HBR; PiO2 = 90.0 ± 0.4 mmHg), and 3) hypoxic ambulation (HAMB; PiO2 = 90.0 ± 0.4 mmHg). Before and after each confinement, subjects performed two incremental-load trials to exhaustion, while inspiring either room air (AIR), or a hypoxic gas (HYPO; PiO2 = 90.0 ± 0.4 mmHg). Changes in regional oxygenation of the vastus lateralis muscle and the frontal cerebral cortex were monitored with near-infrared spectroscopy. Cardiac output (CO) was recorded using a bioimpedance method. The AIR V̇o2 peak was decreased by both HBR (∼13.5%; P ≤ 0.001) and NBR (∼8.6%; P ≤ 0.001), with greater drop after HBR (P = 0.01). The HYPO V̇o2 peak was also reduced by HBR (-9.7%; P ≤ 0.001) and NBR (-6.1%; P ≤ 0.001). Peak CO was lower after both bed-rest interventions, and especially after HBR (HBR: ∼13%, NBR: ∼7%; P ≤ 0.05). Exercise-induced alterations in muscle and cerebral oxygenation were blunted in a similar manner after both bed-rest confinements. No changes were observed in HAMB. Hence, the bed-rest-induced decrease in V̇o2 peak was exaggerated by hypoxia, most likely due to a reduction in convective O2 transport, as indicated by the lower peak values of CO.


Bone | 2016

On the combined effects of normobaric hypoxia and bed rest upon bone and mineral metabolism: Results from the PlanHab study

Joern Rittweger; Tadej Debevec; Petra Frings-Meuthen; Patrick Lau; Uwe Mittag; Bergita Ganse; Philip G. Ferstl; Elizabeth J. Simpson; Ian A. Macdonald; Ola Eiken; Igor B. Mekjavic

Bone losses are common as a consequence of unloading and also in patients with chronic obstructive pulmonary disease (COPD). Although hypoxia has been implicated as an important factor to drive bone loss, its interaction with unloading remains unresolved. The objective therefore was to assess whether human bone loss caused by unloading could be aggravated by chronic hypoxia. In a cross-over designed study, 14 healthy young men underwent 21-day interventions of bed rest in normoxia (NBR), bed rest in hypoxia (HBR), and hypoxic ambulatory confinement (HAmb). Hypoxic conditions were equivalent to 4000m altitude. Bone metabolism (NTX, P1NP, sclerostin, DKK1) and phospho-calcic homeostasis (calcium and phosphate serum levels and urinary excretion, PTH) were assessed from regular blood samples and 24-hour urine collections, and tibia and femur bone mineral content was assessed by peripheral quantitative computed tomography (pQCT). Urinary NTX excretion increased (P<0.001) to a similar extent in NBR and HBR (P=0.69) and P1NP serum levels decreased (P=0.0035) with likewise no difference between NBR and HBR (P=0.88). Serum total calcium was increased during bed rest by 0.059 (day D05, SE 0.05mM) to 0.091mM (day D21, P<0.001), with no additional effect by hypoxia during bed rest (P=0.199). HAmb led, at least temporally, to increased total serum calcium, to reduced serum phosphate, and to reduced phosphate and calcium excretion. In conclusion, hypoxia did not aggravate bed rest-induced bone resorption, but led to changes in phospho-calcic homeostasis likely caused by hyperventilation. Whether hyperventilation could have mitigated the effects of hypoxia in this study remains to be established.


Physiological Reports | 2016

PlanHab: Hypoxia counteracts the erythropoietin suppression, but seems to exaggerate the plasma volume reduction induced by 3 weeks of bed rest

Michail E. Keramidas; Igor B. Mekjavic; Roger Kölegård; Alexander Choukèr; Claudia Strewe; Ola Eiken

The study examined the distinct and synergistic effects of hypoxia and bed rest on the erythropoietin (EPO) concentration and relative changes in plasma volume (PV). Eleven healthy male lowlanders underwent three 21‐day confinement periods, in a counterbalanced order: (1) normoxic bed rest (NBR; PIO2: 133.1 ± 0.3 mmHg); (2) hypoxic bed rest (HBR; PIO2: 90.0 ± 0.4 mmHg, ambient simulated altitude of ~4000 m); and (3) hypoxic ambulation (HAMB; PIO2: 90.0 ± 0.4 mmHg). Blood samples were collected before, during (days 2, 5, 14, and 21) and 2 days after each confinement to determine EPO concentration. Qualitative differences in PV changes were also estimated by changes in hematocrit and hemoglobin concentration along with concomitant changes in plasma renin concentration. NBR caused an initial reduction in EPO by ~39% (P = 0.04). By contrast, HBR enhanced EPO (P = 0.001), but the increase was less than that induced by HAMB (P < 0.01). All three confinements caused a significant reduction in PV (P < 0.05), with a substantially greater drop in HBR than in the other conditions (P < 0.001). Thus, present results suggest that hypoxia prevents the EPO suppression, whereas it seems to exaggerate the PV reduction induced by bed rest.


Frontiers in Physiology | 2017

Hypoxia and Inactivity Related Physiological Changes (Constipation, Inflammation) Are Not Reflected at the Level of Gut Metabolites and Butyrate Producing Microbial Community: The PlanHab Study

Robert Šket; Nicole Treichel; Tadej Debevec; Ola Eiken; Igor B. Mekjavic; Michael Schloter; Marius Vital; Jenna Chandler; James M. Tiedje; Boštjan Murovec; Zala Prevoršek; Blaž Stres

We explored the assembly of intestinal microbiota in healthy male participants during the run-in (5 day) and experimental phases [21-day normoxic bed rest (NBR), hypoxic bedrest (HBR)], and hypoxic ambulation (HAmb) in a strictly controlled laboratory environment, balanced fluid, and dietary intakes, controlled circadian rhythm, microbial ambiental burden, and 24/7 medical surveillance. The fraction of inspired O2 (FiO2) and partial pressure of inspired O2 (PiO2) were 0.209 and 133.1 ± 0.3 mmHg for NBR and 0.141 ± 0.004 and 90.0 ± 0.4 mmHg for both hypoxic variants (HBR and HAmb; ~4,000 m simulated altitude), respectively. A number of parameters linked to intestinal transit spanning Bristol Stool Scale, defecation rates, zonulin, α1-antitrypsin, eosinophil derived neurotoxin, bile acids, reducing sugars, short chain fatty acids, total soluble organic carbon, water content, diet composition, and food intake were measured (167 variables). The abundance, structure, and diversity of butyrate producing microbial community were assessed using the two primary bacterial butyrate synthesis pathways, butyryl-CoA: acetate CoA-transferase (but) and butyrate kinase (buk) genes. Inactivity negatively affected fecal consistency and in combination with hypoxia aggravated the state of gut inflammation (p < 0.05). In contrast, gut permeability, various metabolic markers, the structure, diversity, and abundance of butyrate producing microbial community were not significantly affected. Rearrangements in the butyrate producing microbial community structure were explained by experimental setup (13.4%), experimentally structured metabolites (12.8%), and gut metabolite-immunological markers (11.9%), with 61.9% remaining unexplained. Many of the measured parameters were found to be correlated and were hence omitted from further analyses. The observed progressive increase in two immunological intestinal markers suggested that the transition from healthy physiological state toward the developed symptoms of low magnitude obesity-related syndromes was primarily driven by the onset of inactivity (lack of exercise in NBR) that were exacerbated by systemic hypoxia (HBR) and significantly alleviated by exercise, despite hypoxia (HAmb). Butyrate producing community in colon exhibited apparent resilience toward short-term modifications in host exercise or hypoxia. Progressive constipation (decreased intestinal motility) and increased local inflammation marker suggest that changes in microbial colonization and metabolism were taking place at the location of small intestine.

Collaboration


Dive into the Ola Eiken's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michail E. Keramidas

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Mikael Grönkvist

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Roger Kölegård

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stylianos N. Kounalakis

National and Kapodistrian University of Athens

View shared research outputs
Top Co-Authors

Avatar

Eddie Bergsten

Swedish Defence Research Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge