Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ola Ozernov-Palchik is active.

Publication


Featured researches published by Ola Ozernov-Palchik.


The Journal of Neuroscience | 2013

Tracking the Roots of Reading Ability: White Matter Volume and Integrity Correlate with Phonological Awareness in Prereading and Early-Reading Kindergarten Children

Zeynep M. Saygin; Elizabeth S. Norton; David E. Osher; Sara D. Beach; Abigail Cyr; Ola Ozernov-Palchik; Anastasia Yendiki; Bruce Fischl; Nadine Gaab; John D. E. Gabrieli

Developmental dyslexia, an unexplained difficulty in learning to read, has been associated with alterations in white matter organization as measured by diffusion-weighted imaging. It is unknown, however, whether these differences in structural connectivity are related to the cause of dyslexia or if they are consequences of reading difficulty (e.g., less reading experience or compensatory brain organization). Here, in 40 kindergartners who had received little or no reading instruction, we examined the relation between behavioral predictors of dyslexia and white matter organization in left arcuate fasciculus, inferior longitudinal fasciculus, and the parietal portion of the superior longitudinal fasciculus using probabilistic tractography. Higher composite phonological awareness scores were significantly and positively correlated with the volume of the arcuate fasciculus, but not with other tracts. Two other behavioral predictors of dyslexia, rapid naming and letter knowledge, did not correlate with volumes or diffusion values in these tracts. The volume and fractional anisotropy of the left arcuate showed a particularly strong positive correlation with a phoneme blending test. Whole-brain regressions of behavioral scores with diffusion measures confirmed the unique relation between phonological awareness and the left arcuate. These findings indicate that the left arcuate fasciculus, which connects anterior and posterior language regions of the human brain and which has been previously associated with reading ability in older individuals, is already smaller and has less integrity in kindergartners who are at risk for dyslexia because of poor phonological awareness. These findings suggest a structural basis of behavioral risk for dyslexia that predates reading instruction.


PLOS ONE | 2013

Enhanced Syllable Discrimination Thresholds in Musicians

Jennifer Zuk; Ola Ozernov-Palchik; Heesoo Kim; Kala Lakshminarayanan; John D. E. Gabrieli; Paula Tallal; Nadine Gaab

Speech processing inherently relies on the perception of specific, rapidly changing spectral and temporal acoustic features. Advanced acoustic perception is also integral to musical expertise, and accordingly several studies have demonstrated a significant relationship between musical training and superior processing of various aspects of speech. Speech and music appear to overlap in spectral and temporal features; however, it remains unclear which of these acoustic features, crucial for speech processing, are most closely associated with musical training. The present study examined the perceptual acuity of musicians to the acoustic components of speech necessary for intra-phonemic discrimination of synthetic syllables. We compared musicians and non-musicians on discrimination thresholds of three synthetic speech syllable continua that varied in their spectral and temporal discrimination demands, specifically voice onset time (VOT) and amplitude envelope cues in the temporal domain. Musicians demonstrated superior discrimination only for syllables that required resolution of temporal cues. Furthermore, performance on the temporal syllable continua positively correlated with the length and intensity of musical training. These findings support one potential mechanism by which musical training may selectively enhance speech perception, namely by reinforcing temporal acuity and/or perception of amplitude rise time, and implications for the translation of musical training to long-term linguistic abilities.


Wiley Interdisciplinary Reviews: Cognitive Science | 2016

Tackling the ‘dyslexia paradox’: reading brain and behavior for early markers of developmental dyslexia

Ola Ozernov-Palchik; Nadine Gaab

Developmental dyslexia is an unexplained inability to acquire accurate or fluent reading that affects approximately 5-17% of children. Dyslexia is associated with structural and functional alterations in various brain regions that support reading. Neuroimaging studies in infants and pre-reading children suggest that these alterations predate reading instruction and reading failure, supporting the hypothesis that variant function in dyslexia susceptibility genes lead to atypical neural migration and/or axonal growth during early, most likely in utero, brain development. Yet, dyslexia is typically not diagnosed until a child has failed to learn to read as expected (usually in second grade or later). There is emerging evidence that neuroimaging measures, when combined with key behavioral measures, can enhance the accuracy of identification of dyslexia risk in pre-reading children but its sensitivity, specificity, and cost-efficiency is still unclear. Early identification of dyslexia risk carries important implications for dyslexia remediation and the amelioration of the psychosocial consequences commonly associated with reading failure.


Developmental Science | 2017

Longitudinal Stability of Pre-Reading Skill Profiles of Kindergarten Children: Implications for Early Screening and Theories of Reading.

Ola Ozernov-Palchik; Elizabeth S. Norton; Georgios D. Sideridis; Sara D. Beach; Maryanne Wolf; John D. E. Gabrieli; Nadine Gaab

Research suggests that early identification of developmental dyslexia is important for mitigating the negative effects of dyslexia, including reduced educational attainment and increased socioemotional difficulties. The strongest pre-literacy predictors of dyslexia are rapid automatized naming (RAN), phonological awareness (PA), letter knowledge, and verbal short-term memory. The relationship among these constructs has been debated, and several theories have emerged to explain the unique role of each in reading ability/disability. Furthermore, the stability of identification of risk based on these measures varies widely across studies, due in part to the different cut-offs employed to designate risk. We applied a latent profile analysis technique with a diverse sample of 1215 kindergarten and pre-kindergarten students from 20 schools, to investigate whether PA, RAN, letter knowledge, and verbal short-term memory measures differentiated between homogenous profiles of performance on these measures. Six profiles of performance emerged from the data: average performers, below average performers, high performers, PA risk, RAN risk, and double-deficit risk (both PA and RAN). A latent class regression model was employed to investigate the longitudinal stability of these groups in a representative subset of children (nxa0=xa095) nearly two years later, at the end of 1st grade. Profile membership in the spring semester of pre-kindergarten or fall semester of kindergarten was significantly predictive of later reading performance, with the specific patterns of performance on the different constructs remaining stable across the years. There was a higher frequency of PA and RAN deficits in children from lower socioeconomic status (SES) backgrounds. There was no evidence for the IQ-achievement discrepancy criterion traditionally used to diagnose dyslexia. Our results support the feasibility of early identification of dyslexia risk and point to the heterogeneity of risk profiles. These findings carry important implications for improving outcomes for children with dyslexia, based on more targeted interventions.


Current opinion in behavioral sciences | 2016

Lessons to be learned: how a comprehensive neurobiological framework of atypical reading development can inform educational practice ☆

Ola Ozernov-Palchik; Xi Yu; Yingying Wang; Nadine Gaab

Dyslexia is a heritable reading disorder with an estimated prevalence of 5-17%. A multiple deficit model has been proposed that illustrates dyslexia as an outcome of multiple risks and protective factors interacting at the genetic, neural, cognitive, and environmental levels. Here we review the evidence on each of these levels and discuss possible underlying mechanisms and their reciprocal interactions along a developmental timeline. Current and potential implications of neuroscientific findings for contemporary challenges in the field of dyslexia, as well as for reading development and education in general, are then discussed.


Human Brain Mapping | 2018

Emergence of the neural network underlying phonological processing from the prereading to the emergent reading stage: A longitudinal study

Xi Yu; Talia Raney; Meaghan V. Perdue; Jennifer Zuk; Ola Ozernov-Palchik; Bryce L. C. Becker; Nora Maria Raschle; Nadine Gaab

Numerous studies have shown that phonological skills are critical for successful reading acquisition. However, how the brain network supporting phonological processing evolves and how it supports the initial course of learning to read is largely unknown. Here, for the first time, we characterized the emergence of the phonological network in 28 children over three stages (prereading, beginning reading, and emergent reading) longitudinally. Across these three time points, decreases in neural activation in the left inferior parietal cortex (LIPC) were observed during an audiovisual phonological processing task, suggesting a specialization process in response to reading instruction/experience. Furthermore, using the LIPC as the seed, a functional network consisting of the left inferior frontal, left posterior occipitotemporal, and right angular gyri was identified. The connection strength in this network co‐developed with the growth of phonological skills. Moreover, children with above‐average gains in phonological processing showed a significant developmental increase in connection strength in this network longitudinally, while children with below‐average gains in phonological processing exhibited the opposite trajectory. Finally, the connection strength between the LIPC and the left posterior occipitotemporal cortex at the prereading level significantly predicted reading performance at the emergent reading stage. Our findings highlight the importance of the early emerging phonological network for reading development, providing direct evidence for the Interactive Specialization Theory and neurodevelopmental models of reading.


Journal of Experimental Child Psychology | 2018

Relationships between early literacy and nonlinguistic rhythmic processes in kindergarteners

Ola Ozernov-Palchik; Maryanne Wolf; Aniruddh D. Patel

A growing number of studies report links between nonlinguistic rhythmic abilities and certain linguistic abilities, particularly phonological skills. The current study investigated the relationship between nonlinguistic rhythmic processing, phonological abilities, and early literacy abilities in kindergarteners. A distinctive aspect of the current work was the exploration of whether processing of different types of rhythmic patterns is differentially related to kindergarteners phonological and reading-related abilities. Specifically, we examined the processing of metrical versus nonmetrical rhythmic patterns, that is, patterns capable of being subdivided into equal temporal intervals or not (Povel & Essens, 1985). This is an important comparison because most music involves metrical sequences, in which rhythm often has an underlying temporal grid of isochronous units. In contrast, nonmetrical sequences are arguably more typical to speech rhythm, which is temporally structured but does not involve an underlying grid of equal temporal units. A rhythm discrimination app with metrical and nonmetrical patterns was administered to 74 kindergarteners in conjunction with cognitive and preliteracy measures. Findings support a relationship among rhythm perception, phonological awareness, and letter-sound knowledge (an essential precursor of reading). A mediation analysis revealed that the association between rhythm perception and letter-sound knowledge is mediated through phonological awareness. Furthermore, metrical perception accounted for unique variance in letter-sound knowledge above all other language and cognitive measures. These results point to a unique role for temporal regularity processing in the association between musical rhythm and literacy in young children.


Journal of Experimental Psychology: General | 2017

Revisiting the 'enigma' of musicians with dyslexia: auditory sequencing and speech abilities

Jennifer Zuk; Paula Bishop-Liebler; Ola Ozernov-Palchik; Emma Moore; Katie Overy; Graeme Welch; Nadine Gaab

Previous research has suggested a link between musical training and auditory processing skills. Musicians have shown enhanced perception of auditory features critical to both music and speech, suggesting that this link extends beyond basic auditory processing. It remains unclear to what extent musicians who also have dyslexia show these specialized abilities, considering often-observed persistent deficits that coincide with reading impairments. The present study evaluated auditory sequencing and speech discrimination in 52 adults comprised of musicians with dyslexia, nonmusicians with dyslexia, and typical musicians. An auditory sequencing task measuring perceptual acuity for tone sequences of increasing length was administered. Furthermore, subjects were asked to discriminate synthesized syllable continua varying in acoustic components of speech necessary for intraphonemic discrimination, which included spectral (formant frequency) and temporal (voice onset time [VOT] and amplitude envelope) features. Results indicate that musicians with dyslexia did not significantly differ from typical musicians and performed better than nonmusicians with dyslexia for auditory sequencing as well as discrimination of spectral and VOT cues within syllable continua. However, typical musicians demonstrated superior performance relative to both groups with dyslexia for discrimination of syllables varying in amplitude information. These findings suggest a distinct profile of speech processing abilities in musicians with dyslexia, with specific weaknesses in discerning amplitude cues within speech. Because these difficulties seem to remain persistent in adults with dyslexia despite musical training, this study only partly supports the potential for musical training to enhance the auditory processing skills known to be crucial for literacy in individuals with dyslexia.


Developmental Science | 2018

Early development of letter specialization in left fusiform is associated with better word reading and smaller fusiform face area

Tracy M. Centanni; Elizabeth S. Norton; Anne Park; Sara D. Beach; Kelly Halverson; Ola Ozernov-Palchik; Nadine Gaab; John D. E. Gabrieli

A functional region of left fusiform gyrus termed the visual word form area (VWFA) develops during reading acquisition to respond more strongly to printed words than to other visual stimuli. Here, we examined responses to letters among 5- and 6-year-old early kindergarten children (N = 48) with little or no school-based reading instruction who varied in their reading ability. We used functional magnetic resonance imaging (fMRI) to measure responses to individual letters, false fonts, and faces in left and right fusiform gyri. We then evaluated whether signal change and size (spatial extent) of letter-sensitive cortex (greater activation for letters versus faces) and letter-specific cortex (greater activation for letters versus false fonts) in these regions related to (a) standardized measures of word-reading ability and (b) signal change and size of face-sensitive cortex (fusiform face area or FFA; greater activation for faces versus letters). Greater letter specificity, but not letter sensitivity, in left fusiform gyrus correlated positively with word reading scores. Across children, in the left fusiform gyrus, greater size of letter-sensitive cortex correlated with lesser size of FFA. These findings are the first to suggest that in beginning readers, development of letter responsivity in left fusiform cortex is associated with both better reading ability and also a reduction of the size of left FFA that may result in right-hemisphere dominance for face perception.


Human Brain Mapping | 2018

The relationship between socioeconomic status and white matter microstructure in pre-reading children: A longitudinal investigation

Ola Ozernov-Palchik; Elizabeth S. Norton; Yingying Wang; Sara D. Beach; Jennifer Zuk; Maryanne Wolf; John D. E. Gabrieli; Nadine Gaab

Reading is a learned skill crucial for educational attainment. Children from families of lower socioeconomic status (SES) tend to have poorer reading performance and this gap widens across years of schooling. Reading relies on the orchestration of multiple neural systems integrated via specific white‐matter pathways, but there is limited understanding about whether these pathways relate differentially to reading performance depending on SES background. Kindergarten white‐matter FA and second‐grade reading outcomes were investigated in an SES‐diverse sample of 125 children. The three left‐hemisphere white‐matter tracts most associated with reading, and their right‐hemisphere homologs, were examined: arcuate fasciculus (AF), superior longitudinal fasciculus (SLF), and inferior longitudinal fasciculus (ILF). There was a significant and positive association between SES and fractional anisotropy (FA) in the bilateral ILF in kindergarten. SES moderated the association between kindergarten ILF and second grade reading performance, such that it was positive in lower‐SES children, but not significant in higher‐SES children. These results have implications for understanding the role of the environment in the development of the neural pathways that support reading.

Collaboration


Dive into the Ola Ozernov-Palchik's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

John D. E. Gabrieli

McGovern Institute for Brain Research

View shared research outputs
Top Co-Authors

Avatar

Elizabeth S. Norton

McGovern Institute for Brain Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sara D. Beach

McGovern Institute for Brain Research

View shared research outputs
Top Co-Authors

Avatar

Maryanne Wolf

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xi Yu

Harvard University

View shared research outputs
Top Co-Authors

Avatar

Yingying Wang

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Abigail Cyr

McGovern Institute for Brain Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge