Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olaf A. Bodamer is active.

Publication


Featured researches published by Olaf A. Bodamer.


European Journal of Pediatrics | 2008

Mucopolysaccharidosis type II (Hunter syndrome): A clinical review and recommendations for treatment in the era of enzyme replacement therapy

J. Edmond Wraith; Maurizio Scarpa; Michael Beck; Olaf A. Bodamer; Linda De Meirleir; Nathalie Guffon; Allan M. Lund; Gunilla Malm; Ans T. van der Ploeg; Jiri Zeman

Mucopolysaccharidosis type II (MPS II; Hunter syndrome) is a rare X-linked recessive disease caused by deficiency of the lysosomal enzyme iduronate-2-sulphatase, leading to progressive accumulation of glycosaminoglycans in nearly all cell types, tissues and organs. Clinical manifestations include severe airway obstruction, skeletal deformities, cardiomyopathy and, in most patients, neurological decline. Death usually occurs in the second decade of life, although some patients with less severe disease have survived into their fifth or sixth decade. Until recently, there has been no effective therapy for MPS II, and care has been palliative. Enzyme replacement therapy (ERT) with recombinant human iduronate-2-sulphatase (idursulfase), however, has now been introduced. Weekly intravenous infusions of idursulfase have been shown to improve many of the signs and symptoms and overall wellbeing in patients with MPS II. This paper provides an overview of the clinical manifestations, diagnosis and symptomatic management of patients with MPS II and provides recommendations for the use of ERT. The issue of treating very young patients and those with CNS involvement is also discussed. ERT with idursulfase has the potential to benefit many patients with MPS II, especially if started early in the course of the disease.


Genetics in Medicine | 2011

Lysosomal storage diseases: Diagnostic confirmation and management of presymptomatic individuals

Raymond Y. Wang; Olaf A. Bodamer; Michael S. Watson; William R. Wilcox

Purpose: To develop educational guidelines for the diagnostic confirmation and management of individuals identified by newborn screening, family-based testing after proband identification, or carrier testing in at-risk populations, and subsequent prenatal or postnatal testing of those who are presymptomatic for a lysosomal storage disease.Methods: Review of English language literature and discussions in a consensus development panel comprised an international group of experts in the clinical and laboratory diagnosis, treatment and management, newborn screening, and genetic aspects of lysosomal storage diseases.Results: Although clinical trial and longitudinal data were used when available, the evidence in the literature is limited and consequently the recommendations must be considered as expert opinion. Guidelines were developed for Fabry, Gaucher, and Niemann-Pick A/B diseases, glycogen storage type II (Pompe disease), globoid cell leukodystrophy (Krabbe disease), metachromatic leukodystrophy, and mucopolysaccharidoses types I, II, and VI.Conclusion: These guidelines serve as an educational resource for confirmatory testing and subsequent clinical management of presymptomatic indivduals suspected to have a lysosomal storage disease; they also help to define a research agenda for longitudinal studies such as the American College of Medical Genetics/National Institutes of Health Newborn Screening Translational Research Network.


Journal of Inherited Metabolic Disease | 2003

Clinical characteristics and diagnostic clues in inborn errors of creatine metabolism

Carmen Stromberger; Olaf A. Bodamer; Sylvia Stockler-Ipsiroglu

Summary: Creatine deficiency syndromes are a newly described group of inborn errors of creatine synthesis (arginine:glycine amidinotransferase (AGAT) deficiency and guanidinoaceteate methyltransferase (GAMT) deficiency) and creatine transport (creatine transporter (CRTR) deficiency). The common clinical denominator of creatine deficiency syndromes is mental retardation and epilepsy, suggesting the main involvement of cerebral grey matter (grey matter disease). Patients with GAMT deficiency exhibit a more complex clinical phenotype with dystonic hyperkinetic movement disorder and epilepsy that in some cases is unresponsive to pharmacological treatment. The common biochemical denominator of creatine deficiency syndromes is cerebral creatine deficiency which is demonstrated by in vivo proton magnetic resonance spectroscopy. Measurement of guanidinoacetate in body fluids may discriminate GAMT (high concentration), AGAT (low concentration) and CRTR (normal concentration). Further biochemical characteristics include changes in creatine and creatinine concentrations in body fluids. GAMT and AGAT deficiency are treatable by oral creatine supplementation, while patients with CRTR deficiency do not respond to this type of treatment. Further recognition of patients will be of major importance for the estimation of the frequency, for the understanding of phenotypic variations and for treatment strategies.


Clinical Chemistry | 2008

Development and Evaluation of Quality Control Dried Blood Spot Materials in Newborn Screening for Lysosomal Storage Disorders

Víctor R. De Jesús; X. Kate Zhang; Joan Keutzer; Olaf A. Bodamer; Adolf Mühl; Joseph J. Orsini; Michele Caggana; Robert F. Vogt; W. Harry Hannon

BACKGROUND Lysosomal storage disorders (LSDs) comprise more than 40 genetic diseases that result in the accumulation of products that would normally be degraded by lysosomal enzymes. A tandem mass spectrometry (MS/MS)-based method is available for newborn screening for 5 LSDs, and many laboratories are initiating pilot studies to evaluate the incorporation of this method into their screening panels. We developed and evaluated dried blood spot (DBS) QC materials for LSDs and used the MS/MS method to investigate their suitability for LSD QC monitoring. METHODS We incubated 3.2-mm punches from DBS controls for 20-24 h with assay cocktails containing substrate and internal standard. Using MS/MS, we quantified the resulting product and internal standard. Samples were run in triplicate for 3 consecutive days, and results were reported as product-to-internal standard ratios and enzyme activity units (micromol/L/h). RESULTS Enzyme activity interday imprecision (CV) for the high, medium, and low series were 3.4%-14.3% for galactocerebroside alpha-galactosidase, 6.8%-24.6% for acid alpha-galactosidase A, 7.36%-22.1% for acid sphingomyelinase, 6.2%-26.2% for acid alpha-glucocerebrosidase, and 7.0%-24.8% for lysosomal acid alpha-glucosidase (n = 9). In addition, DBS stored at -20 degrees and 4 degrees C showed minimal enzyme activity loss over a 187-d period. DBS stored at 37 degrees and 45 degrees C had lower activity values over the 187-day evaluation time. CONCLUSIONS Suitable QC materials for newborn screening of LSDs were developed for laboratories performing DBS LSD screening. Good material linearity was observed, with goodness-of-fit values of 0.953 and higher. The QC materials may be used by screening laboratories that perform LSD analysis by MS and/or more conventional fluorescence-based screening methods.


Journal of Inherited Metabolic Disease | 2007

Expanded newborn screening in Europe 2007

Olaf A. Bodamer; Georg F. Hoffmann; Martin Lindner

SummaryBy January 2007 seven European countries had expanded, and more are considering the expansion of their newborn screening programmes by inclusion of ESI tandem mass spectrometry. We present an overview of the current status of expanded newborn screening programmes in Europe. While the first pilot programmes were initiated in 1998 in Germany, most countries started within the last 3 years. The number of disorders screened for by MS/MS ranges from two disorders (phenylketonuria and medium-chain acyl-CoA dehydrogenase deficiency) in some countries to 20 in others. The number of live births investigated per screening centre varies from 18 000 to 77 000. Few programmes have reported the number of positively identified cases and technical data, although many participate in quality assurance and proficiency test schemes. Given the relatively common genetic background of most European populations and similar health care systems, the reasons for the differences observed appear arbitrary and contrary to the optimal benefit of this important preventive health measure. Harmonization of disease screening panels, spectrum of metabolites analysed, sizes of screening laboratories, analytical procedures, follow-up management and proficiency and quality testing is urgently warranted on the European level. This will hopefully occur before screening by novel applications of tandem mass spectrometry for additional groups of disorders including lysosomal storage disorders and X-linked adrenoleukodystrophy are implemented.


Orphanet Journal of Rare Diseases | 2011

Mucopolysaccharidosis type II: European recommendations for the diagnosis and multidisciplinary management of a rare disease

Maurizio Scarpa; Zsuzsanna Almássy; Michael Beck; Olaf A. Bodamer; Iain Bruce; Linda De Meirleir; Nathalie Guffon; Encarna Guillén-Navarro; Pauline Hensman; Simon A. Jones; Wolfgang Kamin; Christoph Kampmann; Christina Lampe; Christine Lavery; Elisa Leão Teles; Bianca Link; Allan M. Lund; Gunilla Malm; Susanne Pitz; Michael P. Rothera; Catherine Stewart; Anna Tylki-Szymańska; Ans T. van der Ploeg; Robert Walker; Jiri Zeman; James E. Wraith

Mucopolysaccharidosis type II (MPS II) is a rare, life-limiting, X-linked recessive disease characterised by deficiency of the lysosomal enzyme iduronate-2-sulfatase. Consequent accumulation of glycosaminoglycans leads to pathological changes in multiple body systems. Age at onset, signs and symptoms, and disease progression are heterogeneous, and patients may present with many different manifestations to a wide range of specialists. Expertise in diagnosing and managing MPS II varies widely between countries, and substantial delays between disease onset and diagnosis can occur. In recent years, disease-specific treatments such as enzyme replacement therapy and stem cell transplantation have helped to address the underlying enzyme deficiency in patients with MPS II. However, the multisystem nature of this disorder and the irreversibility of some manifestations mean that most patients require substantial medical support from many different specialists, even if they are receiving treatment. This article presents an overview of how to recognise, diagnose, and care for patients with MPS II. Particular focus is given to the multidisciplinary nature of patient management, which requires input from paediatricians, specialist nurses, otorhinolaryngologists, orthopaedic surgeons, ophthalmologists, cardiologists, pneumologists, anaesthesiologists, neurologists, physiotherapists, occupational therapists, speech therapists, psychologists, social workers, homecare companies and patient societies.Take-home messageExpertise in recognising and treating patients with MPS II varies widely between countries. This article presents pan-European recommendations for the diagnosis and management of this life-limiting disease.


Molecular Genetics and Metabolism | 2014

Phenylketonuria Scientific Review Conference: State of the science and future research needs

Kathryn M. Camp; Melissa A. Parisi; Phyllis B. Acosta; Gerard T. Berry; Deborah A. Bilder; Nenad Blau; Olaf A. Bodamer; Jeffrey P. Brosco; Christine Brown; Alberto Burlina; Barbara K. Burton; Christine Chang; Paul M. Coates; Amy Cunningham; Steven F. Dobrowolski; John H. Ferguson; Thomas D. Franklin; Dianne M. Frazier; Dorothy K. Grange; Carol L. Greene; Stephen C. Groft; Cary O. Harding; R. Rodney Howell; Kathleen Huntington; Henrietta D. Hyatt-Knorr; Indira Jevaji; Harvey L. Levy; Uta Lichter-Konecki; Mary Lou Lindegren; Michele A. Lloyd-Puryear

New developments in the treatment and management of phenylketonuria (PKU) as well as advances in molecular testing have emerged since the National Institutes of Health 2000 PKU Consensus Statement was released. An NIH State-of-the-Science Conference was convened in 2012 to address new findings, particularly the use of the medication sapropterin to treat some individuals with PKU, and to develop a research agenda. Prior to the 2012 conference, five working groups of experts and public members met over a 1-year period. The working groups addressed the following: long-term outcomes and management across the lifespan; PKU and pregnancy; diet control and management; pharmacologic interventions; and molecular testing, new technologies, and epidemiologic considerations. In a parallel and independent activity, an Evidence-based Practice Center supported by the Agency for Healthcare Research and Quality conducted a systematic review of adjuvant treatments for PKU; its conclusions were presented at the conference. The conference included the findings of the working groups, panel discussions from industry and international perspectives, and presentations on topics such as emerging treatments for PKU, transitioning to adult care, and the U.S. Food and Drug Administration regulatory perspective. Over 85 experts participated in the conference through information gathering and/or as presenters during the conference, and they reached several important conclusions. The most serious neurological impairments in PKU are preventable with current dietary treatment approaches. However, a variety of more subtle physical, cognitive, and behavioral consequences of even well-controlled PKU are now recognized. The best outcomes in maternal PKU occur when blood phenylalanine (Phe) concentrations are maintained between 120 and 360 μmol/L before and during pregnancy. The dietary management treatment goal for individuals with PKU is a blood Phe concentration between 120 and 360 μmol/L. The use of genotype information in the newborn period may yield valuable insights about the severity of the condition for infants diagnosed before maximal Phe levels are achieved. While emerging and established genotype-phenotype correlations may transform our understanding of PKU, establishing correlations with intellectual outcomes is more challenging. Regarding the use of sapropterin in PKU, there are significant gaps in predicting response to treatment; at least half of those with PKU will have either minimal or no response. A coordinated approach to PKU treatment improves long-term outcomes for those with PKU and facilitates the conduct of research to improve diagnosis and treatment. New drugs that are safe, efficacious, and impact a larger proportion of individuals with PKU are needed. However, it is imperative that treatment guidelines and the decision processes for determining access to treatments be tied to a solid evidence base with rigorous standards for robust and consistent data collection. The process that preceded the PKU State-of-the-Science Conference, the conference itself, and the identification of a research agenda have facilitated the development of clinical practice guidelines by professional organizations and serve as a model for other inborn errors of metabolism.


Clinica Chimica Acta | 2001

Analysis of guanidinoacetate and creatine by isotope dilution electrospray tandem mass spectrometry

Olaf A. Bodamer; Shannon M Bloesch; Anthony R. Gregg; Silvia Stockler-Ipsiroglu; William E. O'Brien

Guanidinoacetate methyltransferase (GAMT) deficiency is a disorder of creatine metabolism characterized by low plasma creatine concentrations in combination with elevated guanidinoacetate (GAA) concentrations. Although rare, GAMT deficiency has been identified in children with seizures, extrapyramidal movements, developmental delay, myopathies and behavioral abnormalities. Treatment with creatine monohydrate has been proven to be effective. We describe an isotope dilution electrospray tandem mass spectrometry (ES-MS/MS) assay for the simultaneous determination of plasma GAA and creatine using multiple reaction monitoring (MRM), d(3)-creatine as the internal standard and derivatization of GAA and creatine as butyl-esters. We analysed plasma of 16 healthy adults and 20 healthy children as well as three affected children. Plasma GAA concentrations were 5.02+/-1.84 micromol/l (mean+/-S.D.) in adults, 3.91+/-0.76 micromol/l in children age 5-10 years and 11.57, 15.16, 14.36 micromol/l in children with GAMT deficiency. Plasma creatine concentrations were 34.7+/-15.25 micromol/l in adults, 58.96+/-22.30 micromol/l in children and 5.37, 8.15, 403.5 micromol/l in two untreated children and one treated child with GAMT deficiency, respectively. GAA can also be reliably measured from filter cards, which is sufficient to make the correct diagnosis while creatine is consistently falsely elevated probably secondary to liberation of red cell creatine. In nine healthy newborn infants, GAA concentrations from filter cards were 4.83+/-1.43 and 5.04+/-1.84 micromol/l in 16 healthy adults. We conclude that isotope dilution ES-MS/MS is ideal for rapid high-throughput diagnosis of GAMT deficiency both from plasma and filter paper cards. Using this technique neonatal screening is feasible for this treatable inborn error of creatine metabolism.


Clinical Chemistry | 2008

Newborn Screening for Pompe Disease by Measuring Acid α-Glucosidase Activity Using Tandem Mass Spectrometry

Angela Dajnoki; Adolf Mühl; György Fekete; Joan Keutzer; Joe Orsini; Victor DeJesus; X. Kate Zhang; Olaf A. Bodamer

BACKGROUND Pompe disease, caused by the deficiency of acid alpha-glucosidase (GAA), is a lysosomal storage disorder that manifests itself in its most severe form within the first months of life. Early detection by newborn screening is warranted, since prompt initiation of enzyme replacement therapy may improve morbidity and mortality. We evaluated a tandem mass spectrometry (MS/MS) method to measure GAA activity for newborn screening for Pompe disease. METHODS We incubated 3.2-mm punches from dried blood spots (DBS) for 22 h with the substrate [7-benzoylamino-heptyl)-{2-[4-(3,4,5-trihydroxy-6-hydroxymethyl-tetrahydro-pyran-2-yloxy)-phenylcarbamoyl]- ethyl}-carbamic acid tert-butyl ester] and internal standard [7-d(5)-benzoylamino-heptyl)-[2-(4-hydroxy-phenylcarbamoyl)-ethyl]-carbamic acid tertbutyl ester]. We quantified the resulting product and internal standard using MS/MS. We assessed inter- and intrarun imprecision, carryover, stability, and correlation between enzyme activities and hematocrit and punch location and generated a Pompe disease-specific cutoff value using routine newborn screening samples. RESULTS GAA activities in DBS from 29 known Pompe patients were <2 micromol/h/L. GAA activities in routine newborn screening samples were [mean (SD)] 14.7 (7.2) micromol/h/L (n = 10,279, median 13.3, 95% CI 14.46-14.74 micromol/h/L) and in normal adult samples 9.3 (3.3) micromol/h/L (n = 229, median 9, 95% CI 8.88-9.72 micromol/h/L). GAA activity was stable for 28 days between 37 degrees C and -80 degrees C. Carryover could not be observed, whereas intrarun and interrun imprecision were <10%. The limit of detection was 0.26 micromol/h/L and limit of quantification 0.35 micromol/h/L. CONCLUSIONS The measurement of GAA activities in dry blood spots using MS/MS is suitable for high-throughput analysis and newborn screening for Pompe disease.


Neurology | 2005

Late-onset neurologic disease in glutaryl-CoA dehydrogenase deficiency

S. Külkens; Inga Harting; Sven W. Sauer; Johannes Zschocke; Georg F. Hoffmann; Staci A. Gruber; Olaf A. Bodamer; Stefan Kölker

Neurologic disease in glutaryl-CoA dehydrogenase (GCDH) deficiency usually presents with acute encephalopathic crises before 2 years of age. The authors report two previously asymptomatic patients with macrocephaly presenting with progressive neurologic deterioration and a severe leukoencephalopathy during adolescence or adulthood.

Collaboration


Dive into the Olaf A. Bodamer's collaboration.

Top Co-Authors

Avatar

Adolf Mühl

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Christina Hung

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

J. V. Leonard

UCL Institute of Child Health

View shared research outputs
Top Co-Authors

Avatar

Chike B. Item

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fernando Scaglia

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge