Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olaf Holderer is active.

Publication


Featured researches published by Olaf Holderer.


Journal of Chemical Physics | 2009

Study of the dynamics of poly(ethylene oxide) by combining molecular dynamic simulations and neutron scattering experiments.

Martin Brodeck; F. Alvarez; A. Arbe; Fanni Juranyi; Tobias Unruh; Olaf Holderer; J. Colmenero; D. Richter

We performed quasielastic neutron scattering experiments and atomistic molecular dynamics simulations on a poly(ethylene oxide) (PEO) homopolymer system above the melting point. The excellent agreement found between both sets of data, together with a successful comparison with literature diffraction results, validates the condensed-phase optimized molecular potentials for atomistic simulation studies (COMPASS) force field used to produce our dynamic runs and gives support to their further analysis. This provided direct information on magnitudes which are not accessible from experiments such as the radial probability distribution functions of specific atoms at different times and their moments. The results of our simulations on the H-motions and different experiments indicate that in the high-temperature range investigated the dynamics is Rouse-like for Q-values below approximately 0.6 A(-1). We then addressed the single chain dynamic structure factor with the simulations. A mode analysis, not possible directly experimentally, reveals the limits of applicability of the Rouse model to PEO. We discuss the possible origins for the observed deviations.


Physical Chemistry Chemical Physics | 2012

Polymer dynamics in responsive microgels: influence of cononsolvency and microgel architecture

Christine Scherzinger; Olaf Holderer; D. Richter; Walter Richtering

The dynamics of polymers on the nm and ns scales inside responsive microgels was probed by means of Neutron Spin Echo (NSE) experiments. Four different microgels were studied: poly(N-isopropylacrylamide) (PNIPAM) and poly(N,N-diethylacrylamide) (PDEAAM) microgels, a P(NIPAM-co-DEAAM) copolymer microgel and a core-shell microgel with a PDEAAM core and a PNIPAM shell. These four different microgel systems were investigated in a D(2)O/CD(3)OD solvent mixture with a molar CD(3)OD fraction of x(MeOD) = 0.2 at 10 °C. The PNIPAM and the P(NIPAM-co-DEAAM) microgels are in the collapsed state under these conditions. They behave as solid diffusing objects with only very small additional contributions from internal motions. The PDEAAM particle is swollen under these conditions and mainly Zimm segmental dynamics can be detected in the intermediate scattering function at high momentum transfer. A cross-over to a collective diffusive motion is found for smaller q-values. The shell of the PDEAAM-core-PNIPAM-shell particle is collapsed, which leads to a static contribution to S(q,t); the core, however, is swollen and Zimm segmental dynamics are observed. However, the contributions of the Zimm segmental dynamics to the scattering function are smaller as compared to the pure PDEAAM particle. Interestingly the values of the apparent solvent viscosities inside the microgels as obtained from the NSE experiments are higher than for the bulk solvent. In addition different values were obtained for the PDEAAM microgel, and the PDEAAM-core of the PDEAAM-core-PNIPAM-shell particle, respectively. We attribute the strongly increased viscosity in the PDEAAM particle to enhanced inhomogeneities, which are induced by the swelling of the particle. The different viscosity inside the PDEAAM-core of the PDEAAM-core-PNIPAM-shell microgel could be due to a confinement effect: the collapsed PNIPAM-shell restricts the swelling of the PDEAAM-core and may modify the hydrodynamic interactions in this restricted environment inside the microgel.


Journal of the American Chemical Society | 2014

Internal nanosecond dynamics in the intrinsically disordered myelin basic protein.

Andreas Stadler; Laura Stingaciu; Aurel Radulescu; Olaf Holderer; Michael Monkenbusch; Ralf Biehl; D. Richter

Intrinsically disordered proteins lack a well-defined folded structure and contain a high degree of structural freedom and conformational flexibility, which is expected to enhance binding to their physiological targets. In solution and in the lipid-free state, myelin basic protein belongs to that class of proteins. Using small-angle scattering, the protein was found to be structurally disordered similar to Gaussian chains. The combination of structural and hydrodynamic information revealed an intermediary compactness of the protein between globular proteins and random coil polymers. Modeling by a coarse-grained structural ensemble gave indications for a compact core with flexible ends. Neutron spin-echo spectroscopy measurements revealed a large contribution of internal dynamics to the overall diffusion. The experimental results showed a high flexibility of the structural ensemble. Displacement patterns along the first two normal modes demonstrated that collective stretching and bending motions dominate the internal modes. The observed dynamics represent nanosecond conformational fluctuations within the reconstructed coarse-grained structural ensemble, allowing the exploration of a large configurational space. In an alternative approach, we investigated if models from polymer theory, recently used for the interpretation of fluorescence spectroscopy experiments on disordered proteins, are suitable for the interpretation of the observed motions. Within the framework of the Zimm model with internal friction (ZIF), a large offset of 81.6 ns is needed as an addition to all relaxation times due to intrachain friction sources. The ZIF model, however, shows small but systematic deviations from the measured data. The large value of the internal friction leads to the breakdown of the Zimm model.


Soft Matter | 2011

Structure and dynamics of polymer rings by neutron scattering: breakdown of the Rouse model

Ana R. Brás; Rossana Pasquino; Thanasis Koukoulas; Georgia Tsolou; Olaf Holderer; Aurel Radulescu; Jürgen Allgaier; Vlasis G. Mavrantzas; Wim Pyckhout-Hintzen; Andreas Wischnewski; Dimitris Vlassopoulos; D. Richter

We present a static and quasi-elastic neutron scattering study on both the structure and dynamics of a ring polymer in a ring and linear polymer melt, respectively. In the first case, the ring structure proved to be significantly more compact compared to the linear chain with the same molecular weight. In the mixture, the ring molecules swell as was confirmed by small angle neutron scattering (SANS) in accordance with both theory and simulation work. The dynamical behavior of both systems, which for the first time has been explored by neutron spin echo spectroscopy (NSE), shows a surprisingly fast center of mass diffusion as compared to the linear polymer. These results agree qualitatively with the presented atomistic MD simulations. The fast diffusion turned out to be an explicit violation of the Rouse model.


Journal of Chemical Physics | 2005

Dynamic properties of microemulsions modified with homopolymers and diblock copolymers: The determination of bending moduli and renormalization effects

Olaf Holderer; Henrich Frielinghaus; Dmytro Byelov; Michael Monkenbusch; Jürgen Allgaier; D. Richter

The properties of bicontinuous microemulsions, consisting of water, oil, and a surfactant, can be modified by the addition of diblock copolymers (boosting effect) and homopolymers (inverse boosting effect) or a combination of both. Here, the influence of the addition of homopolymers (PEP(X) and PEO(X), X=5k or 10k molecular weight) on the dynamics of the surfactant layer is studied with neutron spin echo spectroscopy (NSE). Combining the results with the previous findings for diblock copolymers allows for a better separation of viscosity and bending modulus effects. With the addition of homopolymers, a significant increase of the relaxation rate compared to the pure microemulsion has been observed. The influence on the bending rigidity kappa is measured with NSE experiments. Homopolymer addition reduces kappa by up to Deltakappa approximately -0.5k(B)T, whereas the diblock copolymer yields an increase of kappa by approximately 0.3k(B)T. Comparison of the bending moduli that are obtained by analysis of the dynamics to those obtained from small angle neutron scattering (SANS) sheds light on the different renormalization length scales for NSE and SANS. Variation of the surfactant concentration at otherwise constant conditions of homopolymer or diblock-copolymer concentration shows that NSE results are leading to the pure bending rigidity, while the renormalized one is measured with SANS.


Soft Matter | 2010

Polymer dynamics under soft confinement in a self-assembled system

Lutz Willner; Reidar Lund; Michael Monkenbusch; Olaf Holderer; J. Colmenero; D. Richter

Block copolymers that self-assemble into nano-structured melts provide an interesting template for soft confinement. An important question that arises is how the chain dynamics is affected in such self-assembled systems. Here we consider a system composed of poly(isoprene)-b-poly(dimethyl siloxane) (PI6-PDMS30, where the numbers indicate the molecular weight in kg mole−1) having a large asymmetry where the minor PI component block constitutes 19% of the total molecular weight. As shown by small angle neutron scattering (SANS), the system forms hexagonally ordered cylindrical structures composed of a PI phase (with a cylinder radius of about 6.4 nm) in a continuous PDMS matrix. Here we demonstrate using neutron spin-echo spectroscopy and careful H/D contrast matching schemes how the dynamics of single polymer chains (single chain contrast) and the interfacial dynamics of the domains can be resolved independently. This is achieved in the former “single chain contrast” case by matching out the net domain scattering leaving only the intra chain coherent structure factor visible. In the latter “bulk contrast” case, the protonated (h) PI and deuterated (d) PDMS domains are visible and most of the contrast comes from the small interfacial layer where h-PI/d-PDMS segments are intermixed and give rise to a significant contrast by which the fluctuations can be observed. Combining the results from the two contrast conditions, we show that the dynamics can be consistently described in terms of Rouse motion modified by the surface fluctuation and laterally restricted to 2D surface diffusion. Surprisingly, the fluctuations of the interface significantly contribute to the dynamics and the interfacial tension drives the fluctuations of a sizeable portion of the polymer chains while the dynamics is similar to Rouse motion.


Soft Matter | 2013

Anomalous chain diffusion in unentangled model polymer nanocomposites

Gerald J. Schneider; Klaus Nusser; Susanne Neueder; Martin Brodeck; Lutz Willner; B. Farago; Olaf Holderer; Wim J. Briels; D. Richter

We studied unentangled poly(ethylene-alt-propylene) (PEP) in a composite with hydrophobic silica particles as a function of the filler concentration. Our neutron spin echo (NSE) experiments cover both the internal dynamics as well as the center of mass diffusion beyond the Rouse time. The key experimental results are (i) all of the chains are equally mobile, (ii) the basic segmental (Rouse) relaxation rate is unaffected even at highest filler concentrations, and (iii) apparently the obstacles reduce significantly the translational center of mass motion. This happens, even in the case when the particles do not significantly confine the polymer. (iv) A transition from regular to anomalous diffusion in the Rouse regime at the highest particle fractions is clearly evidenced. In order to understand the microscopic mechanisms underlying the experimental observations, we performed coarse grained simulations. We demonstrate that the geometrical confinement only affects the dynamics at a long time scale outside the experimental window and therefore it is not able to explain the results found in the NSE experiments. The consideration of inter-chain interactions, however, results in a significant influence even at shorter times and a quantitative agreement between the experiments and simulations was found. The simulations clearly demonstrate that the interfaces cause a deceleration of the chains in their close vicinity. Then the inter-chain interactions carry this slowing down to the other chains at a time-scale of the Rouse relaxation time. Hence, in the experimental datasets an overall slowing down is observed.


Journal of Physics: Condensed Matter | 2005

Bending moduli of microemulsions; comparison of results from small angle neutron scattering and neutron spin-echo spectroscopy

Michael Monkenbusch; Olaf Holderer; H Frielinghaus; D Byelov; J Allgaier; D. Richter

The properties of bicontinuous microemulsions, consisting of water, oil and a surfactant, depend to a large extent on the bending moduli of the surfactant containing oil–water interface. In systems with CiEj as surfactant these moduli can be modified by the addition of diblock copolymers (boosting effect) and homopolymers (inverse boosting effect) or a combination of both. The influence of the addition of homopolymers (PEPX and PEOX, X = 5 or 10 kg/mol molecular weight) on the structure, bending modulus and dynamics of the surfactant layer is studied with small angle neutron scattering (SANS) and neutron spin-echo spectroscopy (NSE). Besides providing information on the microemulsion structure, neutron scattering is a microscopic probe that can be used to measure the local bending modulus κ. The polymer addition gives access to a homologous series of microemulsions with changing κ values. We relate the results obtained by analysis of SANS to those from NSE experiments. Comparison of the bending moduli obtained sheds light on the different renormalization length scales for NSE and SANS. Comparison of SANS and NSE derived κ values yields a consistent picture if renormalization properties are observed. Finally a ready to use method for converting NSE data into reliable values for κ is presented.


Physical Review E | 2015

Influence of ibuprofen on phospholipid membranes

Sebastian Jaksch; Frederik Lipfert; Alexandros Koutsioubas; Stefan Mattauch; Olaf Holderer; Oxana Ivanova; Henrich Frielinghaus; Samira Hertrich; Stefan Fischer; Bert Nickel

A basic understanding of biological membranes is of paramount importance as these membranes comprise the very building blocks of life itself. Cells depend in their function on a range of properties of the membrane, which are important for the stability and function of the cell, information and nutrient transport, waste disposal, and finally the admission of drugs into the cell and also the deflection of bacteria and viruses. We have investigated the influence of ibuprofen on the structure and dynamics of L-α-phosphatidylcholine (SoyPC) membranes by means of grazing incidence small-angle neutron scattering, neutron reflectometry, and grazing incidence neutron spin echo spectroscopy. From the results of these experiments, we were able to determine that ibuprofen induces a two-step structuring behavior in the SoyPC films, where the structure evolves from the purely lamellar phase for pure SoyPC over a superposition of two hexagonal phases to a purely hexagonal phase at high concentrations. A relaxation, which is visible when no ibuprofen is present in the membrane, vanishes upon addition of ibuprofen. This we attribute to a stiffening of the membrane. This behavior may be instrumental in explaining the toxic behavior of ibuprofen in long-term application.


Physical Chemistry Chemical Physics | 2011

Soft fluctuating surfactant membranes in supercritical CO2-microemulsions

Olaf Holderer; Michael Klostermann; Michael Monkenbusch; Ralf Schweins; Peter Lindner; R. Strey; D. Richter; Thomas Sottmann

The bending rigidity of surfactant membranes in novel bicontinuous CO(2)-microemulsions of the type H(2)O/NaCl-scCO(2)-Zonyl FSH/Zonyl FSN 100 was determined using both high pressure small angle neutron scattering and neutron-spin echo spectroscopy. As an important result it was found, that the stiffness of the membrane increases solely by an increase of the pressure.

Collaboration


Dive into the Olaf Holderer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oxana Ivanova

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

D. Richter

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

Reiner Zorn

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

Werner Lehnert

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

Wiebke Lüke

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Ohl

Forschungszentrum Jülich

View shared research outputs
Researchain Logo
Decentralizing Knowledge