Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olaf J. Borkiewicz is active.

Publication


Featured researches published by Olaf J. Borkiewicz.


Nature Materials | 2013

Origin of additional capacities in metal oxide lithium-ion battery electrodes

Yan-Yan Hu; Zigeng Liu; Kyung-Wan Nam; Olaf J. Borkiewicz; Jun Cheng; Xiao Hua; Matthew T. Dunstan; Xiqian Yu; Kamila M. Wiaderek; Lin-Shu Du; Karena W. Chapman; Peter J. Chupas; Xiao-Qing Yang; Clare P. Grey

Metal fluorides/oxides (MF(x)/M(x)O(y)) are promising electrodes for lithium-ion batteries that operate through conversion reactions. These reactions are associated with much higher energy densities than intercalation reactions. The fluorides/oxides also exhibit additional reversible capacity beyond their theoretical capacity through mechanisms that are still poorly understood, in part owing to the difficulty in characterizing structure at the nanoscale, particularly at buried interfaces. This study employs high-resolution multinuclear/multidimensional solid-state NMR techniques, with in situ synchrotron-based techniques, to study the prototype conversion material RuO2. The experiments, together with theoretical calculations, show that a major contribution to the extra capacity in this system is due to the generation of LiOH and its subsequent reversible reaction with Li to form Li2O and LiH. The research demonstrates a protocol for studying the structure and spatial proximities of nanostructures formed in this system, including the amorphous solid electrolyte interphase that grows on battery electrodes.


Science | 2014

Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes

Hao Liu; Fiona C. Strobridge; Olaf J. Borkiewicz; Kamila M. Wiaderek; Karena W. Chapman; Peter J. Chupas; Clare P. Grey

Introduction The ability to achieve high cycling rates in a lithium-ion battery is limited by the Li transport within the electrolyte; the transport of Li ions and electrons within the electrodes; and, when a phase transformation is induced as a result of the Li compositional changes within an electrode, the nucleation and growth of the second phase. The absence of a phase transformation involving substantial structural rearrangements and large volume changes is generally considered to be key for achieving high rates. This assumption has been challenged by the discovery that some nanoparticulate electrode materials, most notably LiFePO4, can be cycled in a battery at very high rates, even though they cycle between two phases during battery operation. This apparent contradiction has been reconciled by the hypothesis that a nonequilibrium solid solution can be formed during reaction to bypass the nucleation step. Phase transformation from LiFePO4 (blue) to FePO4 (red). The delithiation (indicated by yellow arrows) proceeds at high rates via the formation of a nonequilibrium solid solution phase LixFePO4 (intermediate purple color), avoiding a classical nucleation process (indicated by dashed arrows). When the reaction is interrupted, the particles relax into the equilibrium configuration (shaded region), where only single-phase particles of LiFePO4 and/or FePO4 are present. Rationale To test this proposal, in situ techniques with high temporal resolution must be used to capture the fast phase transformation processes. We performed in situ synchrotron x-ray diffraction (XRD), which readily detects the structural changes and allows for fast data collection, on a LiFePO4-Li battery at high cycling rates, conditions that are able to drive the system away from equilibrium. We used an electrode comprising ~190-nm LiFePO4 particles, carbon, and binder (30:60:10 weight %), along with an electrochemical cell designed to yield reproducible results over multiple cycles, even at high rates. The high carbon content ensures that the reaction at high rates is not limited by either the electronic conductivity or ionic diffusion within the electrode composite. We compared the experimental results with simulated XRD patterns, in which the effects of strain versus compositional variation were explored. We then adapted a whole-pattern fitting method to quantify the compositional variation in the electrode during cycling. Results The XRD patterns, collected during high-rate galvanostatic cycling, show the expected disappearance of LiFePO4 Bragg reflections on charge and the simultaneous formation of FePO4 reflections. In addition, the development of positive intensities between the LiFePO4 and FePO4 reflections indicates that particles with lattice parameters that deviate from the equilibrium values of LiFePO4 and FePO4 are formed. The phenomenon is more pronounced at high currents. Detailed simulations of the XRD patterns reveal that this lattice-parameter variation cannot be explained by a LiFePO4-FePO4 interface within the particles, unless the size of the interface is similar to or greater than the size of the entire particle. Instead, the results indicate compositional variation either within or between particles. Conclusion The results demonstrate the formation of a nonequilibrium solid solution phase, LixFePO4 (0 < x < 1), during high-rate cycling, with compositions that span the entire composition between two thermodynamic phases, LiFePO4 and FePO4. This confirms the hypothesis that phase transformations in nanoparticulate LiFePO4 proceed, at least at high rates, via a continuous change in structure rather than a distinct moving phase boundary between LiFePO4 and FePO4. The ability of LiFePO4 to transform via a nonequilibrium single-phase solid solution, which avoids major structural rearrangement across a moving interface, helps to explain its high-rate performance despite a large Li miscibility gap at room temperature. The creation of a low-energy nonequilibrium path by, for example, particle size reduction or cation doping should enable the high-rate capabilities of other phase-transforming electrode materials. Watching battery materials in action When batteries get rapidly charged and discharged repeatedly, they will often stop working. This is especially true when the cycling changes the crystal structure of the battery components. Liu et al. examined the structural changes in components of a type of lithium battery (see the Perspective by Owen and Hector). Their findings explain why LiFePO4 delivers unexpectedly good electrochemical performances, particularly during rapid cycling. Science, this issue p. 10.1126/science.1252817; see also p. 1451 X-ray diffraction reveals that metastable solid solution reactions undergird the high-rate capability of LiFePO4 electrodes. [Also see Perspective by Owen and Hector] The absence of a phase transformation involving substantial structural rearrangements and large volume changes is generally considered to be a key characteristic underpinning the high-rate capability of any battery electrode material. In apparent contradiction, nanoparticulate LiFePO4, a commercially important cathode material, displays exceptionally high rates, whereas its lithium-composition phase diagram indicates that it should react via a kinetically limited, two-phase nucleation and growth process. Knowledge concerning the equilibrium phases is therefore insufficient, and direct investigation of the dynamic process is required. Using time-resolved in situ x-ray powder diffraction, we reveal the existence of a continuous metastable solid solution phase during rapid lithium extraction and insertion. This nonequilibrium facile phase transformation route provides a mechanism for realizing high-rate capability of electrode materials that operate via two-phase reactions.


Nano Letters | 2014

Extended solid solutions and coherent transformations in nanoscale olivine cathodes.

Dorthe Bomholdt Ravnsbæk; Kai Xiang; Wenting Xing; Olaf J. Borkiewicz; Km Wiaderek; Paul Gionet; Karena W. Chapman; Peter J. Chupas; Yet-Ming Chiang

Nanoparticle LiFePO4, the basis for an entire class of high power Li-ion batteries, has recently been shown to exist in binary lithiated/delithiated states at intermediate states of charge. The Mn-bearing version, LiMn(y)Fe(1-y)PO4, exhibits even higher rate capability as a lithium battery cathode than LiFePO4 of comparable particle size. To gain insight into the cause(s) of this desirable performance, the electrochemically driven phase transformation during battery charge and discharge of nanoscale LiMn0.4Fe0.6PO4 of three different average particle sizes, 52, 106, and 152 nm, is investigated by operando synchrotron radiation powder X-ray diffraction. In stark contrast to the binary lithiation states of pure LiFePO4 revealed in recent investigations, the formations of metastable solid solutions covering a remarkable wide compositional range, including while in two-phase coexistence, are observed. Detailed analysis correlates this behavior with small elastic misfits between phases compared to either pure LiFePO4 or LiMnPO4. On the basis of time- and state-of-charge dependence of the olivine structure parameters, we propose a coherent transformation mechanism. These findings illustrate a second, completely different phase transformation mode for pure well-ordered nanoscale olivines compared to the well-studied case of LiFePO4.


Journal of Applied Crystallography | 2012

The AMPIX electrochemical cell: a versatile apparatus for in situ X-ray scattering and spectroscopic measurements

Olaf J. Borkiewicz; Badri Shyam; Kamila M. Wiaderek; Charles Kurtz; Peter J. Chupas; Karena W. Chapman

This article presents a versatile easy-to-use electrochemical cell suitable for in operando, in situ measurements of battery materials during electrochemical cycling using a variety of X-ray techniques. Argonnes multi-purpose in situ X-ray (AMPIX) cell provides reliable electrochemical cycling over extended periods owing to the uniform stack pressure applied by rigid X-ray windows and the formation of a high-fidelity hermetic seal. The suitability of the AMPIX cell for a broad range of synchrotron-based X-ray scattering and spectroscopic measurements has been demonstrated with studies at eight Advanced Photon Source beamlines to date. Compatible techniques include pair distribution function analysis, high-resolution powder diffraction, small-angle scattering and X-ray absorption spectroscopy. These techniques probe a broad range of electronic, structural and morphological features relevant to battery materials. The AMPIX cell enables experiments providing greater insight into the complex processes that occur in operating batteries by allowing the electrochemical reactions to be probed at fine reaction intervals with greater consistency (within the charge–discharge cycle and between different methodologies) with potential for new time-dependent kinetic studies or studies of transient species. Representative X-ray and electrochemical data to demonstrate the functionality of the AMPIX cell are presented.


Journal of the American Chemical Society | 2016

Tracking Sodium-Antimonide Phase Transformations in Sodium-Ion Anodes: Insights from Operando Pair Distribution Function Analysis and Solid-State NMR Spectroscopy

Phoebe K. Allan; John M. Griffin; Ali Darwiche; Olaf J. Borkiewicz; Kamila M. Wiaderek; Karena W. Chapman; Andrew J. Morris; Peter J. Chupas; Laure Monconduit; Clare P. Grey

Operando pair distribution function (PDF) analysis and ex situ 23Na magic-angle spinning solid-state nuclear magnetic resonance (MAS ssNMR) spectroscopy are used to gain insight into the alloying mechanism of high-capacity antimony anodes for sodium-ion batteries. Subtraction of the PDF of crystalline NaxSb phases from the total PDF, an approach constrained by chemical phase information gained from 23Na ssNMR in reference to relevant model compounds, identifies two previously uncharacterized intermediate species formed electrochemically; a-Na3–xSb (x ≈ 0.4–0.5), a structure locally similar to crystalline Na3Sb (c-Na3Sb) but with significant numbers of sodium vacancies and a limited correlation length, and a-Na1.7Sb, a highly amorphous structure featuring some Sb–Sb bonding. The first sodiation breaks down the crystalline antimony to form first a-Na3–xSb and, finally, crystalline Na3Sb. Desodiation results in the formation of an electrode formed of a composite of crystalline and amorphous antimony networks. We link the different reactivity of these networks to a series of sequential sodiation reactions manifesting as a cascade of processes observed in the electrochemical profile of subsequent cycles. The amorphous network reacts at higher voltages reforming a-Na1.7Sb, then a-Na3–xSb, whereas lower potentials are required for the sodiation of crystalline antimony, which reacts to form a-Na3–xSb without the formation of a-Na1.7Sb. a-Na3–xSb is converted to crystalline Na3Sb at the end of the second discharge. We find no evidence of formation of NaSb. Variable temperature 23Na NMR experiments reveal significant sodium mobility within c-Na3Sb; this is a possible contributing factor to the excellent rate performance of Sb anodes.


Journal of the American Chemical Society | 2016

The Interplay of Al and Mg Speciation in Advanced Mg Battery Electrolyte Solutions

Kimberly A. See; Karena W. Chapman; Lingyang Zhu; Kamila M. Wiaderek; Olaf J. Borkiewicz; Christopher J. Barile; Peter J. Chupas; Andrew A. Gewirth

Mg batteries are an attractive alternative to Li-based energy storage due to the possibility of higher volumetric capacities with the added advantage of using sustainable materials. A promising emerging electrolyte for Mg batteries is the magnesium aluminum chloride complex (MACC) which shows high Mg electrodeposition and stripping efficiencies and relatively high anodic stabilities. As prepared, MACC is inactive with respect to Mg deposition; however, efficient Mg electrodeposition can be achieved following an electrolytic conditioning process. Through the use of Raman spectroscopy, surface enhanced Raman spectroscopy, (27)Al and (35)Cl nuclear magnetic resonance spectroscopy, and pair distribution function analysis, we explore the active vs inactive complexes in the MACC electrolyte and demonstrate the codependence of Al and Mg speciation. These techniques report on significant changes occurring in the bulk speciation of the conditioned electrolyte relative to the as-prepared solution. Analysis shows that the active Mg complex in conditioned MACC is very likely the [Mg2(μ-Cl)3·6THF](+) complex that is observed in the solid state structure. Additionally, conditioning creates free Cl(-) in the electrolyte solution, and we suggest the free Cl(-) adsorbs at the electrode surface to enhance Mg electrodeposition.


Journal of Materials Chemistry | 2015

Electrochemically induced surface modifications of mesoporous spinels (Co3O4−δ, MnCo2O4−δ, NiCo2O4−δ) as the origin of the OER activity and stability in alkaline medium

I. Abidat; N. Bouchenafa-Saib; Aurélien Habrioux; Clément Comminges; Christine Canaff; J. Rousseau; Teko W. Napporn; Damien Dambournet; Olaf J. Borkiewicz; K.B. Kokoh

Co3O4−δ, MnCo2O4−δ, NiCo2O4−δ materials were synthesized using a nanocasting process consisting in replicating a SBA-15 hard template. Catalysts powders obtained were characterized using different physico-chemical techniques (X-ray scattering, transmission electron microscopy, N2 physisorption and X-ray photoelectron spectroscopy) in order to deeply characterize their morphostructural properties. Electrochemical measurements performed with cyclic voltammetry and electrochemical impedance spectroscopy techniques have shown that these catalysts were liable to surface modifications induced by the applied electrode potential. These surface structural modifications as well as their effect on the electroactivity of the catalyst towards the OER in alkaline medium are discussed. The activated NiCo2O4−δ material showed particularly excellent catalytic ability towards the OER in 0.1 M KOH electrolyte. In this material Co(IV) is found to be the active species in the catalyst composition for the OER. It exhibits an overpotential as low as 390 mV at a current density of 10 mA cm−2. This catalytic activity is especially high since the oxide loading is only of 0.074 mg cm−2. Furthermore, this anode catalyst showed high stability during an accelerated durability test of 1500 voltammetric cycles.


Journal of the American Chemical Society | 2015

Multiple Redox Modes in the Reversible Lithiation of High-Capacity, Peierls-Distorted Vanadium Sulfide

Sylvia Britto; Michal Leskes; Xiao Hua; Claire-Alice Hébert; Hyeon Suk Shin; Simon J. Clarke; Olaf J. Borkiewicz; Karena W. Chapman; Ram Seshadri; Jaephil Cho; Clare P. Grey

Vanadium sulfide VS4 in the patronite mineral structure is a linear chain compound comprising vanadium atoms coordinated by disulfide anions [S2](2-). (51)V NMR shows that the material, despite having V formally in the d(1) configuration, is diamagnetic, suggesting potential dimerization through metal-metal bonding associated with a Peierls distortion of the linear chains. This is supported by density functional calculations, and is also consistent with the observed alternation in V-V distances of 2.8 and 3.2 Å along the chains. Partial lithiation results in reduction of the disulfide ions to sulfide S(2-), via an internal redox process whereby an electron from V(4+) is transferred to [S2](2-) resulting in oxidation of V(4+) to V(5+) and reduction of the [S2](2-) to S(2-) to form Li3VS4 containing tetrahedral [VS4](3-) anions. On further lithiation this is followed by reduction of the V(5+) in Li3VS4 to form Li3+xVS4 (x = 0.5-1), a mixed valent V(4+)/V(5+) compound. Eventually reduction to Li2S plus elemental V occurs. Despite the complex redox processes involving both the cation and the anion occurring in this material, the system is found to be partially reversible between 0 and 3 V. The unusual redox processes in this system are elucidated using a suite of short-range characterization tools including (51)V nuclear magnetic resonance spectroscopy (NMR), S K-edge X-ray absorption near edge spectroscopy (XANES), and pair distribution function (PDF) analysis of X-ray data.


Chemistry of Materials | 2014

Identifying the Structure of the Intermediate, Li2/3CoPO4, Formed during Electrochemical Cycling of LiCoPO4

Fiona C. Strobridge; Raphaële J. Clément; Michal Leskes; Derek S. Middlemiss; Olaf J. Borkiewicz; Kamila M. Wiaderek; Karena W. Chapman; Peter J. Chupas; Clare P. Grey

In situ synchrotron diffraction measurements and subsequent Rietveld refinements are used to show that the high energy density cathode material LiCoPO4 (space group Pnma) undergoes two distinct two-phase reactions upon charge and discharge, both occurring via an intermediate Li2/3(Co2+)2/3(Co3+)1/3PO4 phase. Two resonances are observed for Li2/3CoPO4 with intensity ratios of 2:1 and 1:1 in the 31P and 7Li NMR spectra, respectively. An ordering of Co2+/Co3+ oxidation states is proposed within a (a × 3b × c) supercell, and Li+/vacancy ordering is investigated using experimental NMR data in combination with first-principles solid-state DFT calculations. In the lowest energy configuration, both the Co3+ ions and Li vacancies are found to order along the b-axis. Two other low energy Li+/vacancy ordering schemes are found only 5 meV per formula unit higher in energy. All three configurations lie below the LiCoPO4–CoPO4 convex hull and they may be readily interconverted by Li+ hops along the b-direction.


Journal of the American Chemical Society | 2017

Investigating Sodium Storage Mechanisms in Tin Anodes: A Combined Pair Distribution Function Analysis, Density Functional Theory, and Solid-State NMR Approach

Joshua Stratford; Martin Mayo; Phoebe K. Allan; Oliver Pecher; Olaf J. Borkiewicz; Km Wiaderek; Karena W. Chapman; Chris J. Pickard; Andrew J. Morris; Clare P. Grey

The alloying mechanism of high-capacity tin anodes for sodium-ion batteries is investigated using a combined theoretical and experimental approach. Ab initio random structure searching (AIRSS) and high-throughput screening using a species-swap method provide insights into a range of possible sodium-tin structures. These structures are linked to experiments using both average and local structure probes in the form of operando pair distribution function analysis, X-ray diffraction, and 23Na solid-state nuclear magnetic resonance (ssNMR), along with ex situ 119Sn ssNMR. Through this approach, we propose structures for the previously unidentified crystalline and amorphous intermediates. The first electrochemical process of sodium insertion into tin results in the conversion of crystalline tin into a layered structure consisting of mixed Na/Sn occupancy sites intercalated between planar hexagonal layers of Sn atoms (approximate stoichiometry NaSn3). Following this, NaSn2, which is predicted to be thermodynamically stable by AIRSS, forms; this contains hexagonal layers closely related to NaSn3, but has no tin atoms between the layers. NaSn2 is broken down into an amorphous phase of approximate composition Na1.2Sn. Reverse Monte Carlo refinements of an ab initio molecular dynamics model of this phase show that the predominant tin connectivity is chains. Further reaction with sodium results in the formation of structures containing Sn-Sn dumbbells, which interconvert through a solid-solution mechanism. These structures are based upon Na5-xSn2, with increasing occupancy of one of its sodium sites commensurate with the amount of sodium added. ssNMR results indicate that the final product, Na15Sn4, can store additional sodium atoms as an off-stoichiometry compound (Na15+xSn4) in a manner similar to Li15Si4.

Collaboration


Dive into the Olaf J. Borkiewicz's collaboration.

Top Co-Authors

Avatar

Karena W. Chapman

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Peter J. Chupas

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Kamila M. Wiaderek

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hao Liu

China Academy of Engineering Physics

View shared research outputs
Top Co-Authors

Avatar

Wei Li

University of Paris

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge