Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olaf Mandel is active.

Publication


Featured researches published by Olaf Mandel.


Nature | 2002

Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms

Markus Greiner; Olaf Mandel; Tilman Esslinger; T. W. Hänsch; Immanuel Bloch

For a system at a temperature of absolute zero, all thermal fluctuations are frozen out, while quantum fluctuations prevail. These microscopic quantum fluctuations can induce a macroscopic phase transition in the ground state of a many-body system when the relative strength of two competing energy terms is varied across a critical value. Here we observe such a quantum phase transition in a Bose–Einstein condensate with repulsive interactions, held in a three-dimensional optical lattice potential. As the potential depth of the lattice is increased, a transition is observed from a superfluid to a Mott insulator phase. In the superfluid phase, each atom is spread out over the entire lattice, with long-range phase coherence. But in the insulating phase, exact numbers of atoms are localized at individual lattice sites, with no phase coherence across the lattice; this phase is characterized by a gap in the excitation spectrum. We can induce reversible changes between the two ground states of the system.


Nature | 2002

Collapse and revival of the matter wave field of a Bose- Einstein condensate

Markus Greiner; Olaf Mandel; T. W. Hänsch; Immanuel Bloch

A Bose–Einstein condensate represents the most ‘classical’ form of a matter wave, just as an optical laser emits the most classical form of an electromagnetic wave. Nevertheless, the matter wave field has a quantized structure owing to the granularity of the discrete underlying atoms. Although such a field is usually assumed to be intrinsically stable (apart from incoherent loss processes), this is no longer true when the condensate is in a coherent superposition of different atom number states. For example, in a Bose–Einstein condensate confined by a three-dimensional optical lattice, each potential well can be prepared in a coherent superposition of different atom number states, with constant relative phases between neighbouring lattice sites. It is then natural to ask how the individual matter wave fields and their relative phases evolve. Here we use such a set-up to investigate these questions experimentally, observing that the matter wave field of the Bose–Einstein condensate undergoes a periodic series of collapses and revivals; this behaviour is directly demonstrated in the dynamical evolution of the multiple matter wave interference pattern. We attribute the oscillations to the quantized structure of the matter wave field and the collisions between individual atoms.


Nature | 2003

Controlled collisions for multi-particle entanglement of optically trapped atoms

Olaf Mandel; Markus Greiner; Artur Widera; Tim Rom; T. W. Hänsch; Immanuel Bloch

Entanglement lies at the heart of quantum mechanics, and in recent years has been identified as an essential resource for quantum information processing and computation. The experimentally challenging production of highly entangled multi-particle states is therefore important for investigating both fundamental physics and practical applications. Here we report the creation of highly entangled states of neutral atoms trapped in the periodic potential of an optical lattice. Controlled collisions between individual neighbouring atoms are used to realize an array of quantum gates, with massively parallel operation. We observe a coherent entangling–disentangling evolution in the many-body system, depending on the phase shift acquired during the collision between neighbouring atoms. Such dynamics are indicative of highly entangled many-body states; moreover, these are formed in a single operational step, independent of the size of the system.


Physical Review Letters | 2001

Exploring Phase Coherence in a 2D Lattice of Bose-Einstein Condensates

Markus Greiner; Immanuel Bloch; Olaf Mandel; T. W. Hänsch; Tilman Esslinger

Bose-Einstein condensates of rubidium atoms are stored in a two-dimensional periodic dipole force potential, formed by a pair of standing wave laser fields. The resulting potential consists of a lattice of tightly confining tubes, each filled with a 1D quantum gas. Tunnel coupling between neighboring tubes is controlled by the intensity of the laser fields. By observing the interference pattern of atoms released from more than 3000 individual lattice tubes, the phase coherence of the coupled quantum gases is studied. The lifetime of the condensate in the lattice and the dependence of the interference pattern on the lattice configuration are investigated.


Physical Review Letters | 2003

Coherent transport of neutral atoms in spin-dependent optical lattice potentials

Olaf Mandel; Markus Greiner; Artur Widera; Tim Rom; T. W. Hänsch; Immanuel Bloch

We demonstrate the controlled coherent transport and splitting of atomic wave packets in spin-dependent optical lattice potentials. Such experiments open intriguing possibilities for quantum state engineering of many body states. After first preparing localized atomic wave functions in an optical lattice through a Mott insulating phase, we place each atom in a superposition of two internal spin states. Then state selective optical potentials are used to split the wave function of a single atom and transport the corresponding wave packets in two opposite directions. Coherence between the wave packets of an atom delocalized over up to seven lattice sites is demonstrated.


european quantum electronics conference | 2005

Spatial quantum noise interferometry in expanding ultracold atom clouds

Simon Fölling; Fabrice Gerbier; Artur Widera; Olaf Mandel; Tatjana Gericke; Immanuel Bloch

In a pioneering experiment, Hanbury Brown and Twiss (HBT) demonstrated that noise correlations could be used to probe the properties of a (bosonic) particle source through quantum statistics; the effect relies on quantum interference between possible detection paths for two indistinguishable particles. HBT correlations—together with their fermionic counterparts—find numerous applications, ranging from quantum optics to nuclear and elementary particle physics. Spatial HBT interferometry has been suggested as a means to probe hidden order in strongly correlated phases of ultracold atoms. Here we report such a measurement on the Mott insulator phase of a rubidium Bose gas as it is released from an optical lattice trap. We show that strong periodic quantum correlations exist between density fluctuations in the expanding atom cloud. These spatial correlations reflect the underlying ordering in the lattice, and find a natural interpretation in terms of a multiple-wave HBT interference effect. The method should provide a useful tool for identifying complex quantum phases of ultracold bosonic and fermionic atoms.


Physical Review Letters | 2005

Phase coherence of an atomic mott insulator

Fabrice Gerbier; Artur Widera; Simon Fölling; Olaf Mandel; Tatjana Gericke; Immanuel Bloch

We investigate the phase coherence properties of ultracold Bose gases in optical lattices, with special emphasis on the Mott insulating phase. We show that phase coherence on short length scales persists even deep in the insulating phase, preserving a finite visibility of the interference pattern observed after free expansion. This behavior can be attributed to a coherent admixture of particle-hole pairs to the perfect Mott state for small but finite tunneling. In addition, small but reproducible kinks are seen in the visibility, in a broad range of atom numbers. We interpret them as signatures for density redistribution in the shell structure of the trapped Mott insulator.


Physical Review Letters | 2005

Coherent Collisional Spin Dynamics in Optical Lattices

Artur Widera; Fabrice Gerbier; Simon Fölling; Tatjana Gericke; Olaf Mandel; Immanuel Bloch

We report on the observation of coherent, purely collisionally driven spin dynamics of neutral atoms in an optical lattice. For high lattice depths, atom pairs confined to the same lattice site show weakly damped Rabi-type oscillations between two-particle Zeeman states of equal magnetization, induced by spin-changing collisions. Moreover, measurement of the oscillation frequency allows for precise determination of the spin-changing collisional coupling strengths, which are directly related to fundamental scattering lengths describing interatomic collisions at ultracold temperatures.


Physical Review A | 2005

Interference pattern and visibility of a Mott insulator

Fabrice Gerbier; Artur Widera; Simon Foelling; Olaf Mandel; Tatjana Gericke; Immanuel Bloch

We analyze theoretically the experiment reported in [F. Gerbier et al., Phys. Rev. Lett. 95, 050404 (2005)]. There, the interference pattern produced by an expanding atomic cloud in the Mott insulator regime was observed, indicative of short-range coherence in the system. The latter was traced back to the presence of a small amount of particle-hole pairs in the insulating phase for finite lattice depths. We analyze the influence of these pairs on the interference pattern using a random phase approximation, and derive the corresponding visibility. We also account for the inhomogeneity inherent to atom traps in a local density approximation. The calculations reproduce the experimental observations, except for very large lattice depths. The deviation from the measurement in this range is attributed to the increasing importance of nonadiabatic effects.


New Journal of Physics | 2006

Precision measurement of spin-dependent interaction strengths for spin-1 and spin-2 87Rb atoms

Artur Widera; Fabrice Gerbier; Simon Fölling; Tatjana Gericke; Olaf Mandel; Immanuel Bloch

We report on precision measurements of spin-dependent interaction-strengths in the 87Rb spin-1 and spin-2 hyperfine ground states. Our method is based on the recent observation of coherence in the collisionally driven spin-dynamics of ultracold atom pairs trapped in optical lattices. Analysis of the Rabi-type oscillations between two spin states of an atom pair allows a direct determination of the coupling parameters in the interaction Hamiltonian. We deduce differences in scattering lengths from our data that can directly be compared to theoretical predictions in order to test interatomic potentials. Our measurements agree with the predictions within 20%. The knowledge of these coupling parameters allows one to determine the nature of the magnetic ground state. Our data imply a ferromagnetic ground state for 87Rb in the f = 1 manifold, in agreement with earlier experiments performed without the optical lattice. For 87Rb in the f = 2 manifold, the data point towards an antiferromagnetic ground state; however our error bars do not exclude a possible cyclic phase.

Collaboration


Dive into the Olaf Mandel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Markus Greiner

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge