Olaf Marxen
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Olaf Marxen.
Physics of Fluids | 2006
Espen Åkervik; Luca Brandt; Dan S. Henningson; Jérôme Hœpffner; Olaf Marxen; Philipp Schlatter
A new method, enabling the computation of steady solutions of the Navier-Stokes equations in globally unstable configurations, is presented. We show that it is possible to reach a steady state by damping the unstable (temporal) frequencies. This is achieved by adding a dissipative relaxation term proportional to the high-frequency content of the velocity fluctuations. Results are presented for cavity-driven boundary-layer separation and a separation bubble induced by an external pressure gradient.
Flow Turbulence and Combustion | 2003
Olaf Marxen; M. Lang; Ulrich Rist; Siegfried Wagner
A laminar boundary layer separates in a region of adverse pressure gradient on a flat plate and undergoes transition. Finally the turbulent boundary layer reattaches, forming a laminar separation bubble (LSB). Laminar-turbulent transition within such a LSB is investigated by means of Laser-Doppler-Anemometry (LDA), Particle Image Velocimetry (PIV), and direct numerical simulation (DNS). The transition mechanism occurring in the flow-field under consideration is discussed in detail. Observations for the development of small disturbances are compared to predictions from viscous linear instability theory (Tollmien–Schlichting instability). Non-linear development of these disturbances and their role in final breakdown to turbulence is analyzed.
AIAA Journal | 2004
Olaf Marxen; Ulrich Rist; Siegfried Wagner
A laminar boundary layer separates in a region of adverse pressure gradient on a flat plate and undergoes transition. The detached shear layer rolls up into spanwise vortices that rapidly break down into small-scale turbulence. Finally, the turbulent boundary layer reattaches, forming a laminar separation bubble. Development and role of three-dimensional disturbances for transition in such a separation bubble are studied by means of direct numerical simulation with controlled disturbance input. In the present case, the level of incoming three-dimensional perturbations is not relevant due to an absolute secondary instability of these disturbances in the region of convective two-dimensional shear layer rollup. In particular, this is true for steady perturbations up to moderate amplitudes. Following their generation by nonlinear interaction of disturbance waves in the region of favorable pressure gradient, these steady disturbances develop as streaks. Their downstream evolution can be first attributed to transient behavior, depending on initial excitation, followed by a universal state with characteristics of a modal instability. Numerical results are confirmed by a comparison with experimental data.
Journal of Fluid Mechanics | 2011
Olaf Marxen; Dan S. Henningson
Short laminar separation bubbles can develop on a flat plate due to an externally imposed pressure gradient. Here, these bubbles are computed by means of direct numerical simulations. Laminar-turbu ...
Journal of Fluid Mechanics | 2010
Olaf Marxen; Ulrich Rist
The mutual interaction of laminar-turbulent transition and mean flow evolution is studied in a pressure-induced laminar separation bubble on a flat plate. The flat-plate boundary layer is subjected to a sufficiently strong adverse pressure gradient that a separation bubble develops. Upstream of the bubble a small-amplitude disturbance is introduced which causes transition. Downstream of transition, the mean flow strongly changes and, due to viscous-inviscid interaction, the overall pressure distribution is changed as well. As a consequence, the mean flow also changes upstream of the transition location. The difference in the mean flow between the forced and the unforced flows is denoted the mean flow deformation. Two different effects are caused by the mean flow deformation in the upstream, laminar part: a reduction of the size of the separation region and a stabilization of the flow with respect to small, linear perturbations. By carrying out numerical simulations based on the original base flow and the time-averaged deformed base flow, we are able to distinguish between direct and indirect nonlinear effects. Direct effects are caused by the quadratic nonlinearity of the Navier-Stokes equations, are associated with the generation of higher harmonics and are predominantly local. In contrast, the stabilization of the flow is an indirect effect, because it is independent of the Reynolds stress terms in the laminar region and is solely governed by the non-local alteration of the mean flow via the pressure.
Journal of Fluid Mechanics | 2010
Olaf Marxen; Gianluca Iaccarino; Eric S. G. Shaqfeh
A numerical investigation of the disturbance amplification in a Mach 4.8 flat-plate boundary layer with a localized two-dimensional roughness element is presented. The height of the roughness is varied and reaches up to approximately 70% of the boundary-layer thickness. Simulations are based on a time-accurate integration of the compressible Navier-Stokes equations, with a small disturbance of fixed frequency being triggered via blowing and suction upstream of the roughness element. The roughness element considerably alters the instability of the boundary layer, leading to increased amplification or damping of a modal wave depending on the frequency range. The roughness is also the source of an additional perturbation. Even though this additional mode is stable, the interaction with the unstable mode in the form of constructive and destructive interference behind the roughness element leads to a beating and therefore transiently increased disturbance amplitude. Far downstream of the roughness, the amplification rate of a flat-plate boundary layer is recovered. Overall, the two-dimensional roughness element behaves as disturbance amplifier with a limited bandwidth capable of filtering a range of frequencies and strongly amplifying only a selected range.
Journal of Fluid Mechanics | 2010
Rupesh B. Kotapati; Rajat Mittal; Olaf Marxen; Frank Ham; Donghyun You; Louis N. Cattafesta
A novel flow configuration devised for investigation of active control of separated airfoil flows using synthetic jets is presented. The configuration consists of a flat plate, with an elliptic leading edge and a blunt trailing edge, at zero incidence in a free stream. Flow separation is induced on the upper surface of the airfoil at the aft-chord location by applying suction and blowing on the top boundary of the computational domain. Typical separated airfoil flows are generally characterized by at least three distinct frequency scales corresponding to the shear layer instability, the unsteadiness of the separated region and the vortex shedding in the wake, and all these features are present in the current flow. Two-dimensional Navier-Stokes simulations of this flow at a chord Reynolds number of 6 104 have been carried out to examine the nonlinear dynamics in this flow and its implications for synthetic-jet-based separation control. The results show that there is a strong nonlinear coupling between the various features of the flow, and that the uncontrolled as well as the forced flow is characterized by a variety of lock-on states that result from this nonlinear coupling. The most effective separation control is found to occur at the highest forcing frequency for which both the shear layer and the separated region lock on to the forcing frequency. The effects of the Reynolds number on the scaling of the characteristic frequencies of the separated flow and its subsequent control are studied by repeating some of the simulations at a higher Reynolds number of 1 105.
Journal of Fluid Mechanics | 2009
Olaf Marxen; M. Lang; Ulrich Rist; Ori Levin; Dan S. Henningson
Steady linear three-dimensional disturbances are investigated in a two-dimensional laminar boundary layer. The boundary layer is subject to a streamwise favourableto-adverse pressure gradient and eventually undergoes separation. The separating flow corresponds to the first part of a pressure-induced laminar-separation bubble on a flat plate. Streamwise disturbance development in such a flow is studied by means of direct numerical simulation, a water-tunnel experiment and an adjointbased parabolic theory suited to study spatial optimal growth. A complete overview of the disturbance evolution in various areas of the favourable-to-adverse pressure gradient laminar boundary layer is given. Results from all investigation methods show overall good agreement with respect to disturbance growth and shape within the entire domain. In the favourable pressure-gradient region and, again, slightly downstream of separation, transient growth caused by the lift-up effect dominates disturbance behaviour. In the adverse pressure-gradient region, a modal instability is
Physics of Fluids | 2015
Olaf Marxen; Rupesh B. Kotapati; Rajat Mittal; Tamer A. Zaki
The control of flow around a canonical airfoil-like geometry with laminar separation bubble is analyzed using linear stability theory. The theoretical predictions are compared to data from Navier-Stokes simulations [Kotapati et al., “Nonlinear dynamics and synthetic-jet-based control of a canonical separated flow,” J. Fluid Mech. 654, 65-97 (2010)], in which the flow was controlled through a zero-net-mass-flux actuator. Very good agreement between the two approaches is found for a range of frequencies from low to high relative to the most dominant frequency for convective instability. The uncontrolled case exhibits periodic vortex shedding from the separation bubble due to an absolute instability. Linear modes with intermediate frequencies are found to exhibit strongest convective amplification, and forcing at these frequencies is most effective in order to reduce the size and extent of the separation bubble. The corresponding physical mechanism relies on a Kelvin-Helmholtz instability of the separated sh...
Archive | 2002
M. Lang; Olaf Marxen; Ulrich Rist; Siegfried Wagner
A laminar boundary layer separates in a region of adverse pressure gradient on a flat plate, undergoes transition, and finally the turbulent boundary layer reattaches. Laminar-turbulent transition within this laminar separation bubble (LSB) is investigated by means of measurements with a Laser-Doppler-Anemometer (LDA), flow visualization in water and direct numerical simulation (DNS). The role of unsteady disturbances with and without controlled spanwise variation in the occuring mechanism of transition are examined in detail.