Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olaf Sporns is active.

Publication


Featured researches published by Olaf Sporns.


Nature Reviews Neuroscience | 2009

Complex brain networks: graph theoretical analysis of structural and functional systems

Edward T. Bullmore; Olaf Sporns

Recent developments in the quantitative analysis of complex networks, based largely on graph theory, have been rapidly translated to studies of brain network organization. The brains structural and functional systems have features of complex networks — such as small-world topology, highly connected hubs and modularity — both at the whole-brain scale of human neuroimaging and at a cellular scale in non-human animals. In this article, we review studies investigating complex brain networks in diverse experimental modalities (including structural and functional MRI, diffusion tensor imaging, magnetoencephalography and electroencephalography in humans) and provide an accessible introduction to the basic principles of graph theory. We also highlight some of the technical challenges and key questions to be addressed by future developments in this rapidly moving field.


NeuroImage | 2010

Complex network measures of brain connectivity: Uses and interpretations

Mikail Rubinov; Olaf Sporns

Brain connectivity datasets comprise networks of brain regions connected by anatomical tracts or by functional associations. Complex network analysis-a new multidisciplinary approach to the study of complex systems-aims to characterize these brain networks with a small number of neurobiologically meaningful and easily computable measures. In this article, we discuss construction of brain networks from connectivity data and describe the most commonly used network measures of structural and functional connectivity. We describe measures that variously detect functional integration and segregation, quantify centrality of individual brain regions or pathways, characterize patterns of local anatomical circuitry, and test resilience of networks to insult. We discuss the issues surrounding comparison of structural and functional network connectivity, as well as comparison of networks across subjects. Finally, we describe a Matlab toolbox (http://www.brain-connectivity-toolbox.net) accompanying this article and containing a collection of complex network measures and large-scale neuroanatomical connectivity datasets.


PLOS Biology | 2008

Mapping the Structural Core of Human Cerebral Cortex

Patric Hagmann; Leila Cammoun; Xavier Gigandet; Reto Meuli; Christopher J. Honey; Van J. Wedeen; Olaf Sporns

Structurally segregated and functionally specialized regions of the human cerebral cortex are interconnected by a dense network of cortico-cortical axonal pathways. By using diffusion spectrum imaging, we noninvasively mapped these pathways within and across cortical hemispheres in individual human participants. An analysis of the resulting large-scale structural brain networks reveals a structural core within posterior medial and parietal cerebral cortex, as well as several distinct temporal and frontal modules. Brain regions within the structural core share high degree, strength, and betweenness centrality, and they constitute connector hubs that link all major structural modules. The structural core contains brain regions that form the posterior components of the human default network. Looking both within and outside of core regions, we observed a substantial correspondence between structural connectivity and resting-state functional connectivity measured in the same participants. The spatial and topological centrality of the core within cortex suggests an important role in functional integration.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Predicting Human Resting-State Functional Connectivity from structural Connectivity

Ch. Honey; Olaf Sporns; Leila Cammoun; Xavier Gigandet; Jean-Philippe Thiran; Reto Meuli; Patric Hagmann

In the cerebral cortex, the activity levels of neuronal populations are continuously fluctuating. When neuronal activity, as measured using functional MRI (fMRI), is temporally coherent across 2 populations, those populations are said to be functionally connected. Functional connectivity has previously been shown to correlate with structural (anatomical) connectivity patterns at an aggregate level. In the present study we investigate, with the aid of computational modeling, whether systems-level properties of functional networks—including their spatial statistics and their persistence across time—can be accounted for by properties of the underlying anatomical network. We measured resting state functional connectivity (using fMRI) and structural connectivity (using diffusion spectrum imaging tractography) in the same individuals at high resolution. Structural connectivity then provided the couplings for a model of macroscopic cortical dynamics. In both model and data, we observed (i) that strong functional connections commonly exist between regions with no direct structural connection, rendering the inference of structural connectivity from functional connectivity impractical; (ii) that indirect connections and interregional distance accounted for some of the variance in functional connectivity that was unexplained by direct structural connectivity; and (iii) that resting-state functional connectivity exhibits variability within and across both scanning sessions and model runs. These empirical and modeling results demonstrate that although resting state functional connectivity is variable and is frequently present between regions without direct structural linkage, its strength, persistence, and spatial statistics are nevertheless constrained by the large-scale anatomical structure of the human cerebral cortex.


PLOS Computational Biology | 2005

The Human Connectome: A Structural Description of the Human Brain

Olaf Sporns; Giulio Tononi; Rolf Kötter

ABSTRACT The connection matrix of the human brain (the human “connectome”) represents an indispensable foundation for basic and applied neurobiological research. However, the network of anatomical connections linking the neuronal elements of the human brain is still largely unknown. While some databases or collations of large-scale anatomical connection patterns exist for other mammalian species, there is currently no connection matrix of the human brain, nor is there a coordinated research effort to collect, archive, and disseminate this important information. We propose a research strategy to achieve this goal, and discuss its potential impact.


Trends in Cognitive Sciences | 2004

Organization, development and function of complex brain networks

Olaf Sporns; Dante R. Chialvo; Marcus Kaiser; Claus C. Hilgetag

Recent research has revealed general principles in the structural and functional organization of complex networks which are shared by various natural, social and technological systems. This review examines these principles as applied to the organization, development and function of complex brain networks. Specifically, we examine the structural properties of large-scale anatomical and functional brain networks and discuss how they might arise in the course of network growth and rewiring. Moreover, we examine the relationship between the structural substrate of neuroanatomy and more dynamic functional and effective connectivity patterns that underlie human cognition. We suggest that network analysis offers new fundamental insights into global and integrative aspects of brain function, including the origin of flexible and coherent cognitive states within the neural architecture.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Network structure of cerebral cortex shapes functional connectivity on multiple time scales

Christopher J. Honey; Rolf Kötter; Michael Breakspear; Olaf Sporns

Neuronal dynamics unfolding within the cerebral cortex exhibit complex spatial and temporal patterns even in the absence of external input. Here we use a computational approach in an attempt to relate these features of spontaneous cortical dynamics to the underlying anatomical connectivity. Simulating nonlinear neuronal dynamics on a network that captures the large-scale interregional connections of macaque neocortex, and applying information theoretic measures to identify functional networks, we find structure–function relations at multiple temporal scales. Functional networks recovered from long windows of neural activity (minutes) largely overlap with the underlying structural network. As a result, hubs in these long-run functional networks correspond to structural hubs. In contrast, significant fluctuations in functional topology are observed across the sequence of networks recovered from consecutive shorter (seconds) time windows. The functional centrality of individual nodes varies across time as interregional couplings shift. Furthermore, the transient couplings between brain regions are coordinated in a manner that reveals the existence of two anticorrelated clusters. These clusters are linked by prefrontal and parietal regions that are hub nodes in the underlying structural network. At an even faster time scale (hundreds of milliseconds) we detect individual episodes of interregional phase-locking and find that slow variations in the statistics of these transient episodes, contingent on the underlying anatomical structure, produce the transfer entropy functional connectivity and simulated blood oxygenation level-dependent correlation patterns observed on slower time scales.


The Journal of Neuroscience | 2011

Rich-Club Organization of the Human Connectome

Martijn P. van den Heuvel; Olaf Sporns

The human brain is a complex network of interlinked regions. Recent studies have demonstrated the existence of a number of highly connected and highly central neocortical hub regions, regions that play a key role in global information integration between different parts of the network. The potential functional importance of these “brain hubs” is underscored by recent studies showing that disturbances of their structural and functional connectivity profile are linked to neuropathology. This study aims to map out both the subcortical and neocortical hubs of the brain and examine their mutual relationship, particularly their structural linkages. Here, we demonstrate that brain hubs form a so-called “rich club,” characterized by a tendency for high-degree nodes to be more densely connected among themselves than nodes of a lower degree, providing important information on the higher-level topology of the brain network. Whole-brain structural networks of 21 subjects were reconstructed using diffusion tensor imaging data. Examining the connectivity profile of these networks revealed a group of 12 strongly interconnected bihemispheric hub regions, comprising the precuneus, superior frontal and superior parietal cortex, as well as the subcortical hippocampus, putamen, and thalamus. Importantly, these hub regions were found to be more densely interconnected than would be expected based solely on their degree, together forming a rich club. We discuss the potential functional implications of the rich-club organization of the human connectome, particularly in light of its role in information integration and in conferring robustness to its structural core.


Neuroinformatics | 2004

The Small World of the Cerebral Cortex

Olaf Sporns; Jonathan D. Zwi

While much information is available on the structural connectivity of the cerebral cortex, especially in the primate, the main organizational principles of the connection patterns linking brain areas, columns and individual cells have remained elusive. We attempt to characterize a wide variety of cortical connectivity data sets using a specific set of graph theory methods. We measure global aspects of cortical graphs including the abundance of small structural motifs such as cycles, the degree of local clustering of connections and the average path length. We examine large-scale cortical connection matrices obtained from neuroanatomical data bases, as well as probabilistic connection matrices at the level of small cortical neuronal populations linked by intra-areal and interareal connections. All cortical connection matrices examined in this study exhibit “small-world” attributes, characterized by the presence of abundant clustering of connections combined with short average distances between neuronal elements. We discuss the significance of these universal organizational features of cortex in light of functional brain anatomy. Supplementary materials are at www.indiana.edu/∼cortex/lab.htm.


NeuroImage | 2013

Dynamic functional connectivity: promise, issues, and interpretations.

R. Matthew Hutchison; Thilo Womelsdorf; Elena A. Allen; Peter A. Bandettini; Vince D. Calhoun; Maurizio Corbetta; Stefania Della Penna; Jeff H. Duyn; Gary H. Glover; Javier Gonzalez-Castillo; Daniel A. Handwerker; Shella D. Keilholz; Vesa Kiviniemi; David A. Leopold; Francesco de Pasquale; Olaf Sporns; Martin Walter; Catie Chang

The brain must dynamically integrate, coordinate, and respond to internal and external stimuli across multiple time scales. Non-invasive measurements of brain activity with fMRI have greatly advanced our understanding of the large-scale functional organization supporting these fundamental features of brain function. Conclusions from previous resting-state fMRI investigations were based upon static descriptions of functional connectivity (FC), and only recently studies have begun to capitalize on the wealth of information contained within the temporal features of spontaneous BOLD FC. Emerging evidence suggests that dynamic FC metrics may index changes in macroscopic neural activity patterns underlying critical aspects of cognition and behavior, though limitations with regard to analysis and interpretation remain. Here, we review recent findings, methodological considerations, neural and behavioral correlates, and future directions in the emerging field of dynamic FC investigations.

Collaboration


Dive into the Olaf Sporns's collaboration.

Top Co-Authors

Avatar

Gerald M. Edelman

The Neurosciences Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giulio Tononi

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Richard F. Betzel

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xi-Nian Zuo

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Bratislav Misic

Montreal Neurological Institute and Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge