Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olav B. Smeland is active.

Publication


Featured researches published by Olav B. Smeland.


Nature Genetics | 2017

Genome-wide analyses for personality traits identify six genomic loci and show correlations with psychiatric disorders.

Min-Tzu Lo; David A. Hinds; Joyce Y. Tung; Carol E. Franz; Chun-Chieh Fan; Yunpeng Wang; Olav B. Smeland; Andrew J. Schork; Dominic Holland; Karolina Kauppi; Nilotpal Sanyal; Valentina Escott-Price; Daniel J. Smith; Michael Conlon O'Donovan; Hreinn Stefansson; Gyda Bjornsdottir; Thorgeir E. Thorgeirsson; Kari Stefansson; Linda K. McEvoy; Anders M. Dale; Ole A. Andreassen; Chi-Hua Chen

Personality is influenced by genetic and environmental factors and associated with mental health. However, the underlying genetic determinants are largely unknown. We identified six genetic loci, including five novel loci, significantly associated with personality traits in a meta-analysis of genome-wide association studies (N = 123,132–260,861). Of these genome-wide significant loci, extraversion was associated with variants in WSCD2 and near PCDH15, and neuroticism with variants on chromosome 8p23.1 and in L3MBTL2. We performed a principal component analysis to extract major dimensions underlying genetic variations among five personality traits and six psychiatric disorders (N = 5,422–18,759). The first genetic dimension separated personality traits and psychiatric disorders, except that neuroticism and openness to experience were clustered with the disorders. High genetic correlations were found between extraversion and attention-deficit–hyperactivity disorder (ADHD) and between openness and schizophrenia and bipolar disorder. The second genetic dimension was closely aligned with extraversion–introversion and grouped neuroticism with internalizing psychopathology (e.g., depression or anxiety).


Journal of Cerebral Blood Flow and Metabolism | 2011

Knockout of GAD65 has major impact on synaptic GABA synthesized from astrocyte-derived glutamine

Anne B. Walls; Elvar M. Eyjolfsson; Olav B. Smeland; Linn Hege Nilsen; Inger Schousboe; Arne Schousboe; Ursula Sonnewald; Helle S. Waagepetersen

γ-Aminobutyric acid (GABA) synthesis from glutamate is catalyzed by glutamate decarboxylase (GAD) of which two isoforms, GAD65 and GAD67, have been identified. The GAD65 has repeatedly been shown to be important during intensified synaptic activity. To specifically elucidate the significance of GAD65 for maintenance of the highly compartmentalized intracellular and intercellular GABA homeostasis, GAD65 knockout and corresponding wild-type mice were injected with [1-13C]glucose and the astrocyte-specific substrate [1,2-13C]acetate. Synthesis of GABA from glutamine in the GABAergic synapses was further investigated in GAD65 knockout and wild-type mice using [1,2-13C]acetate and in some cases c-vinylGABA (GVG, Vigabatrin), an inhibitor of GABA degradation. A detailed metabolic mapping was obtained by nuclear magnetic resonance (NMR) spectroscopic analysis of tissue extracts of cerebral cortex and hippocampus. The GABA content in both brain regions was reduced by ~20%. Moreover, it was revealed that GAD65 is crucial for maintenance of biosynthesis of synaptic GABA particularly by direct synthesis from astrocytic glutamine via glutamate. The GAD67 was found to be important for synthesis of GABA from glutamine both via direct synthesis and via a pathway involving mitochondrial metabolism. Furthermore, a severe neuronal hypometabolism, involving glycolysis and tricarboxylic acid (TCA) cycle activity, was observed in cerebral cortex of GAD65 knockout mice.


Journal of Cerebral Blood Flow and Metabolism | 2013

Brain mitochondrial metabolic dysfunction and glutamate level reduction in the pilocarpine model of temporal lobe epilepsy in mice

Olav B. Smeland; Mussie Ghezu Hadera; Tanya S. McDonald; Ursula Sonnewald; Karin Borges

Although certain metabolic characteristics such as interictal glucose hypometabolism are well established for temporal lobe epilepsy (TLE), its pathogenesis still remains unclear. Here, we performed a comprehensive study of brain metabolism in a mouse model of TLE, induced by pilocarpine-status epilepticus (SE). To investigate glucose metabolism, we injected mice 3.5-4 weeks after SE with [1,2- 13 C]glucose before microwave fixation of the head. Using 1 H and 13 C nuclear magnetic resonance spectroscopy, gas chromatography—mass spectrometry and high-pressure liquid chromatography, we quantified metabolites and 13 C labeling in extracts of cortex and hippocampal formation (HF). Hippocampal levels of glutamate, glutathione and alanine were decreased in pilocarpine-SE mice compared with controls. Moreover, the contents of N-acetyl aspartate, succinate and reduced nicotinamide adenine dinucleotide (phosphate) NAD(P)H were decreased in HF indicating impairment of mitochondrial function. In addition, the reduction in 13 C enrichment of hippocampal citrate and malate suggests decreased tricarboxylic acid (TCA) cycle turnover in this region. In cortex, we found reduced 13 C labeling of glutamate, glutamine and aspartate via the pyruvate carboxylation and pyruvate dehydrogenation pathways, suggesting slower turnover of these amino acids and/or the TCA cycle. In conclusion, mitochondrial metabolic dysfunction and altered amino-acid metabolism is found in both cortex and HF in this epilepsy model.


Neurochemistry International | 2012

Chronic acetyl-l-carnitine alters brain energy metabolism and increases noradrenaline and serotonin content in healthy mice

Olav B. Smeland; Tore Wergeland Meisingset; Karin Borges; Ursula Sonnewald

Acetyl-L-carnitine (ALCAR), the short-chain ester of carnitine, is a common dietary supplement readily available in health food stores, claimed to improve energy levels and muscle strength. ALCAR has numerous effects on brain and muscle metabolism, protects against neurotoxic insults and may be an effective treatment for certain forms of depression. However, little is known about the effect of chronic ALCAR supplementation on the brain metabolism of healthy mice. Here, we investigated ALCARs effect on cerebral energy and neurotransmitter metabolism after supplementing the drinking water of mice with ALCAR for 25 days, providing a daily dose of about 0.5 g/kg. Thereafter the animals were injected with [1-(13)C]glucose, and (13)C incorporation into and levels of various metabolites were quantified in extracts of the hippocampal formation (HF) and cortex using (1)H- and (13)C-nuclear magnetic resonance (NMR) spectroscopy and high performance liquid chromatography (HPLC). Increased glucose levels were detected in both regions together with a decreased amount of [3-(13)C]lactate, but no alterations in incorporation of (13)C derived from [1-(13)C]glucose into the amino acids glutamate, GABA and glutamine. These findings are consistent with decreased metabolism of glucose to lactate but not via the TCA cycle. Higher amounts of the sum of adenosine nucleotides, phosphocreatine and the phosphocreatine/creatine ratio found in the cortex of ALCAR-treated mice are indicative of increased energy levels. Furthermore, ALCAR supplementation increased the levels of the neurotransmitters noradrenaline in the HF and serotonin in cortex, consistent with ALCARs potential efficacy for depressive symptoms. Other ALCAR-induced changes observed included reduced amounts of GABA in the HF and increased myo-inositol. In conclusion, chronic ALCAR supplementation decreased glucose metabolism to lactate, resulted in increased energy metabolite and altered monoamine neurotransmitter levels in the mouse brain.


Journal of Neurochemistry | 2014

Triheptanoin partially restores levels of tricarboxylic acid cycle intermediates in the mouse pilocarpine model of epilepsy

Mussie Ghezu Hadera; Olav B. Smeland; Tanya S. McDonald; Kah Ni Tan; Ursula Sonnewald; Karin Borges

Triheptanoin, the triglyceride of heptanoate, is anticonvulsant in various epilepsy models. It is thought to improve energy metabolism in the epileptic brain by re‐filling the tricarboxylic acid (TCA) cycle with C4‐intermediates (anaplerosis). Here, we injected mice with [1,2‐13C]glucose 3.5–4 weeks after pilocarpine‐induced status epilepticus (SE) fed either a control or triheptanoin diet. Amounts of metabolites and incorporations of 13C were determined in extracts of cerebral cortices and hippocampal formation and enzyme activity and mRNA expression were quantified. The percentage enrichment with two 13C atoms in malate, citrate, succinate, and GABA was reduced in hippocampal formation of control‐fed SE compared with control mice. Except for succinate, these reductions were not found in triheptanoin‐fed SE mice, indicating that triheptanoin prevented a decrease of TCA cycle capacity. Compared to those on control diet, triheptanoin‐fed SE mice showed few changes in most other metabolite levels and their 13C labeling. Reduced pyruvate carboxylase mRNA and enzyme activity in forebrains and decreased [2,3‐13C]aspartate amounts in cortex suggest a pyruvate carboxylation independent source of C‐4 TCA cycle intermediates. Most likely anaplerosis was kept unchanged by carboxylation of propionyl‐CoA derived from heptanoate. Further studies are proposed to fully understand triheptanoins effects on neuroglial metabolism and interaction.


Molecular Psychiatry | 2017

Genetic evidence for role of integration of fast and slow neurotransmission in schizophrenia

Anna Devor; Ole A. Andreassen; Yunpeng Wang; Tuomo Mäki-Marttunen; Olav B. Smeland; Chun Chieh Fan; Andrew J. Schork; Dominic Holland; Wesley K. Thompson; Aree Witoelar; Chi-Hua Chen; Rahul S. Desikan; Linda K. McEvoy; Srdjan Djurovic; Paul Greengard; Per Svenningsson; Gaute T. Einevoll; Anders M. Dale

The most recent genome-wide association studies (GWAS) of schizophrenia (SCZ) identified hundreds of risk variants potentially implicated in the disease. Further, novel statistical methodology designed for polygenic architecture revealed more potential risk variants. This can provide a link between individual genetic factors and the mechanistic underpinnings of SCZ. Intriguingly, a large number of genes coding for ionotropic and metabotropic receptors for various neurotransmitters—glutamate, γ-aminobutyric acid (GABA), dopamine, serotonin, acetylcholine and opioids—and numerous ion channels were associated with SCZ. Here, we review these findings from the standpoint of classical neurobiological knowledge of neuronal synaptic transmission and regulation of electrical excitability. We show that a substantial proportion of the identified genes are involved in intracellular cascades known to integrate ‘slow’ (G-protein-coupled receptors) and ‘fast’ (ionotropic receptors) neurotransmission converging on the protein DARPP-32. Inspection of the Human Brain Transcriptome Project database confirms that that these genes are indeed expressed in the brain, with the expression profile following specific developmental trajectories, underscoring their relevance to brain organization and function. These findings extend the existing pathophysiology hypothesis by suggesting a unifying role of dysregulation in neuronal excitability and synaptic integration in SCZ. This emergent model supports the concept of SCZ as an ‘associative’ disorder—a breakdown in the communication across different slow and fast neurotransmitter systems through intracellular signaling pathways—and may unify a number of currently competing hypotheses of SCZ pathophysiology.


JAMA Psychiatry | 2017

Identification of Genetic Loci Jointly Influencing Schizophrenia Risk and the Cognitive Traits of Verbal-Numerical Reasoning, Reaction Time, and General Cognitive Function

Olav B. Smeland; Oleksandr Frei; Karolina Kauppi; W. David Hill; Wen Li; Yunpeng Wang; Florian Krull; Francesco Bettella; Jon Alm Eriksen; Aree Witoelar; Gail Davies; Chun Chieh Fan; Wesley K. Thompson; Max Lam; Todd Lencz; Chi-Hua Chen; Torill Ueland; Erik G. Jönsson; Srdjan Djurovic; Ian J. Deary; Anders M. Dale; Ole A. Andreassen

Importance Schizophrenia is associated with widespread cognitive impairments. Although cognitive deficits are one of the factors most strongly associated with functional outcome in schizophrenia, current treatment strategies largely fail to ameliorate these impairments. To develop more efficient treatment strategies in patients with schizophrenia, a better understanding of the pathogenesis of these cognitive deficits is needed. Accumulating evidence indicates that genetic risk of schizophrenia may contribute to cognitive dysfunction. Objective To identify genomic regions jointly influencing schizophrenia and the cognitive domains of reaction time and verbal-numerical reasoning, as well as general cognitive function, a phenotype that captures the shared variation in performance across cognitive domains. Design, Setting, and Participants Combining data from genome-wide association studies from multiple phenotypes using conditional false discovery rate analysis provides increased power to discover genetic variants and could elucidate shared molecular genetic mechanisms. Data from the following genome-wide association studies, published from July 24, 2014, to January 17, 2017, were combined: schizophrenia in the Psychiatric Genomics Consortium cohort (n = 79 757 [cases, 34 486; controls, 45 271]); verbal-numerical reasoning (n = 36 035) and reaction time (n = 111 483) in the UK Biobank cohort; and general cognitive function in CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) (n = 53 949) and COGENT (Cognitive Genomics Consortium) (n = 27 888). Main Outcomes and Measures Genetic loci identified by conditional false discovery rate analysis. Brain messenger RNA expression and brain expression quantitative trait locus functionality were determined. Results Among the participants in the genome-wide association studies, 21 loci jointly influencing schizophrenia and cognitive traits were identified: 2 loci shared between schizophrenia and verbal-numerical reasoning, 6 loci shared between schizophrenia and reaction time, and 14 loci shared between schizophrenia and general cognitive function. One locus was shared between schizophrenia and 2 cognitive traits and represented the strongest shared signal detected (nearest gene TCF20; chromosome 22q13.2), and was shared between schizophrenia (z score, 5.01; P = 5.53 × 10−7), general cognitive function (z score, –4.43; P = 9.42 × 10−6), and verbal-numerical reasoning (z score, –5.43; P = 5.64 × 10−8). For 18 loci, schizophrenia risk alleles were associated with poorer cognitive performance. The implicated genes are expressed in the developmental and adult human brain. Replicable expression quantitative trait locus functionality was identified for 4 loci in the adult human brain. Conclusions and Relevance The discovered loci improve the understanding of the common genetic basis underlying schizophrenia and cognitive function, suggesting novel molecular genetic mechanisms.


Neurochemistry International | 2012

Dietary supplementation with acetyl-l-carnitine in seizure treatment of pentylenetetrazole kindled mice.

Olav B. Smeland; Tore Wergeland Meisingset; Ursula Sonnewald

In spite of the availability of new antiepileptic drugs a considerable number of epilepsy patients still have pharmacoresistant seizures, and thus there is a need for novel approaches. Acetyl-l-carnitine (ALCAR), which delivers acetyl units to mitochondria for acetyl-CoA production, has been shown to improve brain energy homeostasis and protects against various neurotoxic insults. To our knowledge, this is the first study of ALCARs effect on metabolism in pentylenetetrazole (PTZ) kindled mice. ALCAR or the commonly used antiepileptic drug valproate, was added to the drinking water of mice for 25days, and animals were injected with PTZ or saline three times a week during the last 21 days. In order to investigate ALCARs effects on glucose metabolism, mice were injected with [1-(13)C]glucose 15 min prior to microwave fixation. Brain extracts from cortex and the hippocampal formation (HF) were studied using (1)H and (13)C NMR spectroscopy and HPLC. PTZ kindling caused glucose hypometabolism, evidenced by a reduction in both glycolysis and TCA cycle turnover in both brain regions investigated. Glutamatergic and GABAergic neurons were affected in cortex and HF, but the amount of glutamate was only reduced in HF. Slight astrocytic involvement could be detected in the cortex. Interestingly, the dopamine content was increased in the HF. ALCAR attenuated the PTZ induced reduction in [3-(13)C]alanine and the increase in dopamine in the HF. However, TCA cycle metabolism was not different from that seen in PTZ kindled animals. In conclusion, even though ALCAR did not delay the kindling process, it did show some promising ameliorative effects, worthy of further investigation.


Scientific Reports | 2017

Identification of genetic loci shared between schizophrenia and the Big Five personality traits.

Olav B. Smeland; Yunpeng Wang; Min-Tzu Lo; Wen Li; Oleksandr Frei; Aree Witoelar; Martin Tesli; David A. Hinds; Joyce Y. Tung; Srdjan Djurovic; Chi-Hua Chen; Anders M. Dale; Ole A. Andreassen

Schizophrenia is associated with differences in personality traits, and recent studies suggest that personality traits and schizophrenia share a genetic basis. Here we aimed to identify specific genetic loci shared between schizophrenia and the Big Five personality traits using a Bayesian statistical framework. Using summary statistics from genome-wide association studies (GWAS) on personality traits in the 23andMe cohort (n = 59,225) and schizophrenia in the Psychiatric Genomics Consortium cohort (n = 82,315), we evaluated overlap in common genetic variants. The Big Five personality traits neuroticism, extraversion, openness, agreeableness and conscientiousness were measured using a web implementation of the Big Five Inventory. Applying the conditional false discovery rate approach, we increased discovery of genetic loci and identified two loci shared between neuroticism and schizophrenia and six loci shared between openness and schizophrenia. The study provides new insights into the relationship between personality traits and schizophrenia by highlighting genetic loci involved in their common genetic etiology.


Neurochemical Research | 2016

Modification of Astrocyte Metabolism as an Approach to the Treatment of Epilepsy: Triheptanoin and Acetyl-l-Carnitine

Mussie Ghezu Hadera; Tanya S. McDonald; Olav B. Smeland; Tore Wergeland Meisingset; Haytham Eloqayli; Saied A. Jaradat; Karin Borges; Ursula Sonnewald

Epilepsy is a severe neurological disorder characterized by altered electrical activity in the brain. Important pathophysiological mechanisms include disturbed metabolism and homeostasis of major excitatory and inhibitory neurotransmitters, glutamate and GABA. Current drug treatments are largely aimed at decreasing neuronal excitability and thereby preventing the occurrence of seizures. However, many patients are refractory to treatment and side effects are frequent. Temporal lobe epilepsy (TLE) is the most common type of drug-resistant epilepsy in adults. In rodents, the pilocarpine-status epilepticus model reflects the pathology and chronic spontaneous seizures of TLE and the pentylenetetrazole kindling model exhibits chronic induced limbic seizures. Accumulating evidence from studies on TLE points to alterations in astrocytes and neurons as key metabolic changes. The present review describes interventions which alleviate these disturbances in astrocyte–neuronal interactions by supporting mitochondrial metabolism. The compounds discussed are the endogenous transport molecule acetyl-l-carnitine and the triglyceride of heptanoate, triheptanoin. Both provide acetyl moieties for oxidation in the tricarboxylic acid cycle whereas heptanoate is also provides propionyl-CoA, which after carboxylation can produce succinyl-CoA, resulting in anaplerosis—the refilling of the tricarboxylic acid cycle.

Collaboration


Dive into the Olav B. Smeland's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anders M. Dale

University of California

View shared research outputs
Top Co-Authors

Avatar

Oleksandr Frei

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yunpeng Wang

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ursula Sonnewald

Norwegian University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge