Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olav Krigolson is active.

Publication


Featured researches published by Olav Krigolson.


Neuroscience | 2006

Evidence for hierarchical error processing in the human brain

Olav Krigolson; Clay B. Holroyd

Human goal-directed behavior depends on multiple neural systems that monitor and correct for different types of errors. For example, tracking errors in continuous motor tasks appear to be processed by a system involving posterior parietal cortex, whereas errors in speeded response and trial-and-error learning tasks appear to be processed by a system involving frontal-medial cortex. To date, it is unknown whether there is a functional relationship between the posterior and frontal error systems. We recorded the event-related brain potential from participants engaged in a tracking task to investigate the role of the frontal system in continuous motor control. Our results demonstrate that tracking errors elicit temporally distinct error-related event-related brain potentials over frontal and posterior regions of the scalp, suggesting an interaction between the subcomponents of a hierarchically organized system for error processing. Specifically, we propose that the frontal error system assesses high-level errors (i.e. goal attainment) whereas the posterior error system is responsible for evaluating low-level errors (i.e. trajectory deviations during motor control).


Journal of Cognitive Neuroscience | 2011

When it becomes mine: Attentional biases triggered by object ownership

David J. Turk; Kim van Bussel; Joanne L. Brebner; Andreea S. Toma; Olav Krigolson; Todd C. Handy

Previous research has demonstrated that higher-order cognitive processes associated with the allocation of selective attention are engaged when highly familiar self-relevant items are encountered, such as ones name, face, personal possessions and the like. The goal of our study was to determine whether these effects on attentional processing are triggered on-line at the moment self-relevance is established. In a pair of experiments, we recorded ERPs as participants viewed common objects (e.g., apple, socks, and ketchup) in the context of an “ownership” paradigm, where the presentation of each object was followed by a cue indicating whether the object nominally belonged either to the participant (a “self” cue) or the experimenter (an “other” cue). In Experiment 1, we found that “self” ownership cues were associated with increased attentional processing, as measured via the P300 component. In Experiment 2, we replicated this effect while demonstrating that at a visual–perceptual level, spatial attention became more narrowly focused on objects owned by self, as measured via the lateral occipital P1 ERP component. Taken together, our findings indicate that self-relevant attention effects are triggered by the act of taking ownership of objects associated with both perceptual and postperceptual processing in cortex.


Spatial Vision | 2007

The proximity of visual landmarks impacts reaching performance

Olav Krigolson; Nick Clark; Matthew Heath; Gord Binsted

The control of goal-directed reaching movements is thought to rely upon egocentric visual information derived from the visuomotor networks of the dorsal visual pathway. However, recent research (Krigolson and Heath, 2004) suggests it is also possible to make allocentric comparisons between a visual background and a target object to facilitate reaching accuracy. Here we sought to determine if the effectiveness of these allocentric comparisons is reduced as distance between a visual background and a target object increases. To accomplish this, participants completed memory-guided reaching movements to targets presented in an otherwise empty visual background or positioned within a proximal, medial, or distal visual background. Our results indicated that the availability of a proximal or medial visual background reduced endpoint variability relative to reaches made without a visual background. Interestingly, we found that endpoint variability was not reduced when participants reached to targets framed within a distal visual background. Such findings suggest that allocentric visual information is used to facilitate reaching performance; however, the fidelity by which such cues are used appears linked to the proximity of veridical target location. Importantly, these data also suggest that information from both the dorsal and ventral visual streams can be integrated to facilitate the online control of reaching movements.


Brain Research | 2011

The importance of skin color and facial structure in perceiving and remembering others: An electrophysiological study

Joanne L. Brebner; Olav Krigolson; Todd C. Handy; Susanne Quadflieg; David J. Turk

The own-race bias (ORB) is a well-documented recognition advantage for own-race (OR) over cross-race (CR) faces, the origin of which remains unclear. In the current study, event-related potentials (ERPs) were recorded while Caucasian participants age-categorized Black and White faces which were digitally altered to display either a race congruent or incongruent facial structure. The results of a subsequent surprise memory test indicated that regardless of facial structure participants recognized White faces better than Black faces. Additional analyses revealed that temporally-early ERP components associated with face-specific perceptual processing (N170) and the individuation of facial exemplars (N250) were selectively sensitive to skin color. In addition, the N200 (a component that has been linked to increased attention and depth of encoding afforded to in-group and OR faces) was modulated by color and structure, and correlated with subsequent memory performance. However, the LPP component associated with the cognitive evaluation of perceptual input was influenced by racial differences in facial structure alone. These findings suggest that racial differences in skin color and facial structure are detected during the encoding of unfamiliar faces, and that the categorization of conspecifics as members of our social in-group on the basis of their skin color may be a determining factor in our ability to subsequently remember them.


Frontiers in Human Neuroscience | 2012

Mind wandering and motor control: off-task thinking disrupts the online adjustment of behavior

Julia W. Y. Kam; Elizabeth Dao; Patricia Blinn; Olav Krigolson; Lara A. Boyd; Todd C. Handy

Mind wandering episodes have been construed as periods of “stimulus-independent” thought, where our minds are decoupled from the external sensory environment. In two experiments, we used behavioral and event-related potential (ERP) measures to determine whether mind wandering episodes can also be considered as periods of “response-independent” thought, with our minds disengaged from adjusting our behavioral outputs. In the first experiment, participants performed a motor tracking task and were occasionally prompted to report whether their attention was “on-task” or “mind wandering.” We found greater tracking error in periods prior to mind wandering vs. on-task reports. To ascertain whether this finding was due to attenuation in visual perception per se vs. a disruptive effect of mind wandering on performance monitoring, we conducted a second experiment in which participants completed a time-estimation task. They were given feedback on the accuracy of their estimations while we recorded their EEG, and were also occasionally asked to report their attention state. We found that the sensitivity of behavior and the P3 ERP component to feedback signals were significantly reduced just prior to mind wandering vs. on-task attentional reports. Moreover, these effects co-occurred with decreases in the error-related negativity elicited by feedback signals (fERN), a direct measure of behavioral feedback assessment in cortex. Our findings suggest that the functional consequences of mind wandering are not limited to just the processing of incoming stimulation per se, but extend as well to the control and adjustment of behavior.


Experimental Brain Research | 2006

A lower visual field advantage for endpoint stability but no advantage for online movement precision

Olav Krigolson; Matthew Heath

It has been proposed that visually guided reaching movements performed in the lower visual field (LVF) of peripersonal space are more effective and efficient than their upper visual field (UVF) counterparts (Danckert and Goodale 2001). In the present investigation we sought to determine whether this purported visual field asymmetry reflects advantaged processing of online visual feedback. To accomplish that objective, participants performed discrete reaching movements to each of three target locations in the LVF and UVF. In addition, reaches were completed under conditions wherein target location remained constant throughout a reaching response (i.e., control trials) and a separate condition wherein target location unexpectedly perturbed at movement onset (i.e., experimental trials). We reasoned that the target perturbation paradigm would provide a novel means to assess a possible superior–inferior visual field asymmetry for online reaching control. In terms of the impact of a target perturbation, both visual fields demonstrated equal proficiency integrating visual feedback for online limb adjustments. Interestingly, however, the spatial distribution of movement endpoints in the LVF was less than UVF counterparts (cf. Binsted and Heath 2005). Taken together, the present findings suggest that although LVF and UVF reaches readily use visual feedback to accommodate an unexpected target perturbation, reaches in the LVF elicit advantaged spatial benefits influencing the effectiveness of online limb corrections.


Experimental Brain Research | 2006

Muller-Lyer figures influence the online reorganization of visually guided grasping movements

Matthew Heath; Christina Rival; Kristina A. Neely; Olav Krigolson

In advance of grasping a visual object embedded within fins-in and fins-out Müller-Lyer (ML) configurations, participants formulated a premovement grip aperture (GA) based on the size of a neutral preview object. Preview objects were smaller, veridical, or larger than the size of the to-be-grasped target object. As a result, premovement GA associated with the small and large preview objects required significant online reorganization to appropriately grasp the target object. We reasoned that such a manipulation would provide an opportunity to examine the extent to which the visuomotor system engages egocentric and/or allocentric visual cues for the online, feedback-based control of action. It was found that the online reorganization of GA was reliably influenced by the ML figures (i.e., from 20 to 80% of movement time), regardless of the size of the preview object, albeit the small and large preview objects elicited more robust illusory effects than the veridical preview object. These results counter the view that online grasping control is mediated by absolute visual information computed with respect to the observer (e.g., Glover in Behav Brain Sci 27:3–78, 2004; Milner and Goodale in The visual brain in action 1995). Instead, the impact of the ML figures suggests a level of interaction between egocentric and allocentric visual cues in online action control.


Cognitive Neuropsychology | 2011

Bootstrap analysis of the single subject with event related potentials

Ipek Oruc; Olav Krigolson; Kirsten A. Dalrymple; Lindsay S. Nagamatsu; Todd C. Handy; Jason J. S. Barton

Neural correlates of cognitive states in event-related potentials (ERPs) serve as markers for related cerebral processes. Although these are usually evaluated in subject groups, the ability to evaluate such markers statistically in single subjects is essential for case studies in neuropsychology. Here we investigated the use of a simple test based on nonparametric bootstrap confidence intervals for this purpose, by evaluating three different ERP phenomena: the face-selectivity of the N170, error-related negativity, and the P3 component in a Posner cueing paradigm. In each case, we compare single-subject analysis with statistical significance determined using bootstrap to conventional group analysis using analysis of variance (ANOVA). We found that the proportion of subjects who show a significant effect at the individual level based on bootstrap varied, being greatest for the N170 and least for the P3. Furthermore, it correlated with significance at the group level. We conclude that the bootstrap methodology can be a viable option for interpreting single-case ERP amplitude effects in the right setting, probably with well-defined stereotyped peaks that show robust differences at the group level, which may be more characteristic of early sensory components than late cognitive effects.


Experimental Brain Research | 2012

Electroencephalographic evidence of vector inversion in antipointing.

Matthew Heath; Jon Bell; Clay B. Holroyd; Olav Krigolson

Mirror-symmetrical reaching movements (i.e., antipointing) produce a visual-field-specific pattern of endpoint bias consistent with a perceptual representation of visual space (Heath et al. in Exp Brain Res 192:275–286, 2009a; J Mot Behav 41:383–392 2009b). The goal of the present investigation was to examine the concurrent behavioural and event-related brain potentials (ERP) of pro- and antipointing to determine whether endpoint bias in the latter task is related to a remapping of the environmental parameters of a target (i.e., vector inversion hypothesis) or a shift of visual attention from a veridical to a cognitively represented target location (i.e., reallocation of attention hypothesis). As expected, results for antipointing—but not propointing—yielded a visual-field-specific pattern of endpoint bias. In terms of the ERP findings, an early component (i.e., the N100) related to the orienting of visuospatial attention was comparable across pro- and antipointing. In contrast, a later occurring component (i.e., the P300) demonstrated a reliable between-task difference in amplitude. Notably, the P300 has been linked to the revision of a ‘mental model’ when a mismatch is noted between a stimulus and a required task goal (so-called context-updating). Thus, we propose that the between-task difference in the P300 indicates that antipointing is associated with a remapping of a target’s veridical location in mirror-symmetrical space (i.e., vector inversion). Moreover, our combined behavioural and ERP findings provide evidence that vector inversion is mediated via perception-based visual networks.


Human Movement Science | 2004

Background visual cues and memory-guided reaching

Olav Krigolson; Matthew Heath

Collaboration


Dive into the Olav Krigolson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew Heath

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Todd C. Handy

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jon Bell

University of Victoria

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge