Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olav Tenstad is active.

Publication


Featured researches published by Olav Tenstad.


Scandinavian Journal of Clinical & Laboratory Investigation | 1996

Renal handling of radiolabelled human cystatin C in the rat

Olav Tenstad; Anca B. Roald; Anders Grubb; Knut Aukland

Serum cystatin C concentration correlates negatively with glomerular filtration rate as well as or better than that of serum creatinine, suggesting a constant formation, and elimination from extracellular fluid mainly by glomerular filtration. It is not known, however, how well the renal plasma clearance of this 13-kDa basic polypeptide matches the glomerular filtration rate. This was investigated in rats during control conditions and after reduced renal perfusion pressure. 125I-cystatin C and an indicator for glomerular filtration (51Cr-EDTA or 131I-aprotinin) were injected intravenously. The renal accumulation and urinary excretion of the tracers were recorded in periods of 2.5 to 20.0 min. The renal plasma clearance of 125I-cystatin C (Ccy) based on the renal content of 125I correlated well with the glomerular filtration rate (CCr-EDTA) in periods up to 6 min; i.e. Ccy = 0.94 x CCr-EDTA, r = 0.99. Less than 0.5% of the filtered amount appeared in the urine. During more prolonged periods, Ccy increasingly underestimated glomerular filtration rate, reaching about 0.4 x CCr-EDTA in a 20-min period. Free 125I relative to total plasma 125I activity increased from about 2% at 5 min to about 70% at 20 min. In nephrectomized rats, free 125I accumulated in plasma at a slower rate, accounting for about 15% of the total activity 20 min after injection of 125I-cystatin C. We conclude that cystatin C is (a) mainly removed from the extracellular fluid by the kidneys, (b) practically freely filtered in the glomeruli, and (c) completely absorbed and rapidly broken down by the proximal tubular cells.


Journal of Clinical Investigation | 2013

Immune cells control skin lymphatic electrolyte homeostasis and blood pressure

Helge Wiig; Agnes Schröder; Wolfgang Neuhofer; Jonathan Jantsch; Christoph W. Kopp; Tine V. Karlsen; Michael Boschmann; Jennifer Goss; Maija Bry; Natalia Rakova; Anke Dahlmann; Sven Brenner; Olav Tenstad; Harri Nurmi; Eero Mervaala; Hubertus Wagner; Franz-Xaver Beck; Dominik Müller; Dontscho Kerjaschki; Friedrich C. Luft; David G. Harrison; Kari Alitalo; Jens Titze

The skin interstitium sequesters excess Na+ and Cl- in salt-sensitive hypertension. Mononuclear phagocyte system (MPS) cells are recruited to the skin, sense the hypertonic electrolyte accumulation in skin, and activate the tonicity-responsive enhancer-binding protein (TONEBP, also known as NFAT5) to initiate expression and secretion of VEGFC, which enhances electrolyte clearance via cutaneous lymph vessels and increases eNOS expression in blood vessels. It is unclear whether this local MPS response to osmotic stress is important to systemic blood pressure control. Herein, we show that deletion of TonEBP in mouse MPS cells prevents the VEGFC response to a high-salt diet (HSD) and increases blood pressure. Additionally, an antibody that blocks the lymph-endothelial VEGFC receptor, VEGFR3, selectively inhibited MPS-driven increases in cutaneous lymphatic capillary density, led to skin Cl- accumulation, and induced salt-sensitive hypertension. Mice overexpressing soluble VEGFR3 in epidermal keratinocytes exhibited hypoplastic cutaneous lymph capillaries and increased Na+, Cl-, and water retention in skin and salt-sensitive hypertension. Further, we found that HSD elevated skin osmolality above plasma levels. These results suggest that the skin contains a hypertonic interstitial fluid compartment in which MPS cells exert homeostatic and blood pressure-regulatory control by local organization of interstitial electrolyte clearance via TONEBP and VEGFC/VEGFR3-mediated modification of cutaneous lymphatic capillary function.


Journal of The American Society of Nephrology | 2009

Adriamycin alters glomerular endothelium to induce proteinuria.

Marie Jeansson; Karin Björck; Olav Tenstad; Börje Haraldsson

The pathophysiology underlying the nephrotic syndrome is becoming clear for several inherited podocytopathies; the mechanisms of injury that lead to the acquired forms of this disease are not well understood. We explored these mechanisms using the mouse model of adriamycin-induced proteinuria.We estimated the fractional clearances for FITC-Ficolls, albumin, and neutral albumin in cooled, isolated,perfused kidneys (cIPK) in situ. Treatment with adriamycin led to a significant increase in the fractional clearance of albumin and of Ficoll with radii larger than 20 A. Neutral albumin (33.4 A) and similarly sized Ficoll behaved similarly to each other. In addition, adriamycin led to a significant loss of charge density and size selectivity of the glomerular barrier. The thickness of the glomerular endothelial surface layer(i.e., or the glycocalyx) in adriamycin-treated animals was only 20% of that in normal animals. Finally,several proteoglycans were downregulated in isolated glomeruli. In summary, adriamycin thins the glomerular glycocalyx, perhaps by downregulating proteoglycan synthesis, and alters glomerular charge- and size selectivity. These data suggest that the glomerular endothelium may play a role in the pathogenesis of proteinuric renal diseases.


Kidney International | 2011

The glomerular endothelial cell coat is essential for glomerular filtration

Vincent Fridén; Eystein Oveland; Olav Tenstad; Kerstin Ebefors; Jenny Nyström; Ulf Nilsson; Börje Haraldsson

The endothelial cell surface layer (ESL) is believed to contribute to the glomerular barrier, and the nature of its molecular structure is still largely unknown. The ESL consists of the membrane-bound glycocalyx and the loosely attached endothelial cell coat (ECC). A brief injection of hypertonic sodium chloride into the left renal artery was used to displace, elute, and collect non-covalently bound components of the renal ESL in rats. This procedure increased the fractional clearance of albumin 12-fold without detectable morphological changes as assessed by electron microscopy compared with the control group injected with isotonic saline. Mathematical modeling suggested a reduced glomerular charge density. Mass spectrometry of the renal eluate identified 17 non-covalently bound proteins normally present in the ECC. One of these proteins, orosomucoid, has previously been shown to be important for capillary permselectivity. Another protein, lumican, is expressed by glomerular endothelial cells and likely contributes to maintaining an intact barrier. Thus, the absence of one or more of these proteins causes proteinuria and illustrates the importance of the ECC in glomerular permselectivity.


Fibrogenesis & Tissue Repair | 2010

Interstitial fluid: the overlooked component of the tumor microenvironment?

Helge Wiig; Olav Tenstad; Per Ole Iversen; Raghu Kalluri; Rolf Bjerkvig

BackgroundThe interstitium, situated between the blood and lymph vessels and the cells, consists of a solid or matrix phase and a fluid phase, together constituting the tissue microenvironment. Here we focus on the interstitial fluid phase of tumors, i.e., the fluid bathing the tumor and stromal cells. Novel knowledge on this compartment may provide important insight into how tumors develop and how they respond to therapy.ResultsWe discuss available techniques for interstitial fluid isolation and implications of recent findings with respect to transcapillary fluid balance and uptake of macromolecular therapeutic agents. By the development of new methods it is emerging that local gradients exist in signaling substances from neoplastic tissue to plasma. Such gradients may provide new insight into the biology of tumors and mechanistic aspects linked to therapy. The emergence of sensitive proteomic technologies has made the interstitial fluid compartment in general and that of tumors in particular a highly valuable source for tissue-specific proteins that may serve as biomarker candidates. Potential biomarkers will appear locally at high concentrations in the tissue of interest and will eventually appear in the plasma, where they are diluted.ConclusionsAccess to fluid that reliably reflects the local microenvironment enables us to identify substances that can be used in early detection and monitoring of disease.


The Journal of Physiology | 2005

The interstitial distribution of macromolecules in rat tumours is influenced by the negatively charged matrix components

Helge Wiig; Christina C. Gyenge; Olav Tenstad

Knowledge of macromolecular distribution volumes is essential in understanding fluid transport within normal and pathological tissues. In this study in vivo we determined the distribution volumes of several macromolecules, including one monoclonal antibody, in tumours and tested whether charges associated with the tumour extracellular matrix influence their available volumes. Steady state levels of the monoclonal antibody trastuzumab (Herceptin) (pI = 9.2), IgG (pI = 7.6) as well as native (pI = 5.0) and cationized albumin (pI = 7.6) were established in rats bearing dimethylbenzanthracene (DMBA)‐induced mammary tumours by continuous infusion using osmotic minipumps. After a 5–7 day infusion period, the rats were nephrectomized and the extracellular volume was determined with 51Cr‐labelled EDTA. Plasma volumes were measured with 125I‐labelled human serum albumin or rat IgM in a separate series. Steady state concentrations of probes were determined in the interstitial fluid that was isolated by centrifugation from tumours or by post mortem wick implantation in the back skin. Calculations were made for interstitial fluid volume (Vi), along with the available (Va/Vi) and excluded (Ve/Vi) relative interstitial volume fractions. The Ve/Vi for the positively charged trastuzumab in tumours averaged 0.29 ± 0.03 (n= 16), a value which was significantly lower than the corresponding one for IgG of 0.36 ± 0.02 (n= 16). Native albumin was excluded from 38% of the tumour interstitial fluid, whereas cationization of albumin reduced the excluded volume by ∼50%. Our experiments suggest that the tumour interstitium acts as a negatively charged matrix and is an important factor in determining the macromolecular distribution volume.


The Journal of Physiology | 2006

Cytokine signalling in rat pulp interstitial fluid and transcapillary fluid exchange during lipopolysaccharide-induced acute inflammation

Athanasia Bletsa; Ellen Berggreen; Inge Fristad; Olav Tenstad; Helge Wiig

The dental pulp consists of loose connective tissue encased in rigid dentinal walls. Because of its topography the tissue has low interstitial compliance and limited capacity to expand during fluid volume changes. Due to limitations regarding access to interstitial fluid, basic knowledge on transcapillary fluid transport parameters is lacking for this organ. The scope of this project was dual: first we aimed at establishing a method for isolation of pulp interstitial fluid (IF), and second we applied the method in rats subjected to lipopolysaccharide (LPS)‐induced endotoxaemia. The aim was to measure colloid osmotic pressure (COP) and pro‐inflammatory cytokines in the pulp IF during acute inflammation. Fluid volumes and pulpal blood flow (PBF) were measured to obtain more information about microcirculatory changes that take place in this pulpitis model. By centrifugation of incisor pulp at 239 g we were able to extract fluid representative for IF. Pulp IF had a relative high control COP (∼83% of plasma COP) and was similar to plasma COP 3 h after LPS challenge. The pulp exhibited a high content of IF (0.60 ± 0.03 ml (g wet weight)−1) and a vascular volume of 0.03 ± 0.01 ml (g w.w.)−1 No differences were observed in the distribution of fluid volumes after 1.5 and 3 h LPS exposure. PBF and systemic blood pressure dropped significantly after LPS administration. PBF remained low whereas systemic blood pressure was re‐established during the 3‐h period, implying organ dysfunction. There was a differential pattern of cytokine expression in pulp IF and serum with cytokines such as IL‐1α, IL‐1β and TNF‐α locally produced, whereas others such as IFN‐γ and IL‐6 were produced systemically and probably spilled over to the pulp IF after LPS exposure. Our findings show that pulp IF can be isolated by centrifugation and that this method is useful when studying fluid balance and extracellular signalling mechanisms in the dental pulp in normal and pathological conditions.


PLOS ONE | 2011

A New Method for Isolation of Interstitial Fluid from Human Solid Tumors Applied to Proteomic Analysis of Ovarian Carcinoma Tissue

Hanne Haslene-Hox; Eystein Oveland; Kaja Christine Graue Berg; Odd Kolmannskog; Kathrine Woie; Helga B. Salvesen; Olav Tenstad; Helge Wiig

Major efforts have been invested in the identification of cancer biomarkers in plasma, but the extraordinary dynamic range in protein composition, and the dilution of disease specific proteins make discovery in plasma challenging. Focus is shifting towards using proximal fluids for biomarker discovery, but methods to verify the isolated samples origin are missing. We therefore aimed to develop a technique to search for potential candidate proteins in the proximal proteome, i.e. in the tumor interstitial fluid, since the biomarkers are likely to be excreted or derive from the tumor microenvironment. Since tumor interstitial fluid is not readily accessible, we applied a centrifugation method developed in experimental animals and asked whether interstitial fluid from human tissue could be isolated, using ovarian carcinoma as a model. Exposure of extirpated tissue to 106 g enabled tumor fluid isolation. The fluid was verified as interstitial by an isolated fluid:plasma ratio not significantly different from 1.0 for both creatinine and Na+, two substances predominantly present in interstitial fluid. The isolated fluid had a colloid osmotic pressure 79% of that in plasma, suggesting that there was some sieving of proteins at the capillary wall. Using a proteomic approach we detected 769 proteins in the isolated interstitial fluid, sixfold higher than in patient plasma. We conclude that the isolated fluid represents undiluted interstitial fluid and thus a subproteome with high concentration of locally secreted proteins that may be detected in plasma for diagnostic, therapeutic and prognostic monitoring by targeted methods.


Microcirculation | 2008

The Role of the Extracellular Matrix in Tissue Distribution of Macromolecules in Normal and Pathological Tissues: Potential Therapeutic Consequences

Helge Wiig; Christina C. Gyenge; Per Ole Iversen; Donald Gullberg; Olav Tenstad

The interstitial space is a dynamic microenvironment that consists of interstitial fluid and structural molecules of the extracellular matrix, such as glycosaminoglycans (hyaluronan and proteoglycans) and collagen. Macromolecules can distribute in the interstitium only in those spaces unoccupied by structural components, a phenomenon called interstitial exclusion. The exclusion phenomenon has direct consequences for plasma volume regulation. Early studies have assigned a major role to collagen as an excluding agent that accounts for the sterical (geometrical) exclusion. More recently, it has been shown that the contribution of negatively charged glycosaminoglycans might also be significant, resulting in an additional electrostatical exclusion effect. This charge effect may be of importance for drug uptake and suggests that either the glycosaminoglycans or the net charge of macromolecular substances to be delivered may be targeted to increase the available volume and uptake of macromolecular therapeutic agents in tumor tissue. Here, we provide an overview of the structural components of the interstitium and discuss the importance the sterical and electrostatical components have on the dynamics of transcapillary fluid exchange.


The Journal of Physiology | 2010

Atrial natriuretic peptide modulation of albumin clearance and contrast agent permeability in mouse skeletal muscle and skin: role in regulation of plasma volume

F. E. Curry; Cecilie Brekke Rygh; Tine V. Karlsen; Helge Wiig; R. H. Adamson; Joyce F. Clark; Yueh Chen Lin; Birgit Gassner; Frits Thorsen; Ingrid Moen; Olav Tenstad; Michaela Kuhn; Rolf K. Reed

Atrial natriuretic peptide (ANP) via its guanylyl cyclase‐A (GC‐A) receptor participates in regulation of arterial blood pressure and vascular volume. Previous studies demonstrated that concerted renal diuretic/natriuretic and endothelial permeability effects of ANP cooperate in intravascular volume regulation. We show that the microvascular endothelial contribution to the hypovolaemic action of ANP can be measured by the magnitude of the ANP‐induced increase in blood‐to‐tissue albumin transport, measured as plasma albumin clearance corrected for intravascular volume change, relative to the corresponding increase in ANP‐induced renal water excretion. We used a two‐tracer method with isotopically labelled albumin to measure clearances in skin and skeletal muscle of: (i) C57BL6 mice; (ii) mice with endothelium‐restricted deletion of GC‐A (floxed GC‐A × tie2‐Cre: endothelial cell (EC) GC‐A knockout (KO)); and (iii) control littermates (floxed GC‐A mice with normal GC‐A expression levels). Comparison of albumin clearances in hypervolaemic EC GC‐A KO mice with normovolaemic littermates demonstrated that skeletal muscle albumin clearance with ANP treatment accounts for at most 30% of whole body clearance required for ANP to regulate plasma volume. Skin microcirculation responded to ANP similarly. Measurements of permeability to a high molecular mass contrast agent (35 kD Gadomer) by dynamic contrast‐enhanced magnetic resonance imaging (DCE‐MRI) enabled repeated measures in individual animals and confirmed small increases in muscle and skin microvascular permeability after ANP. These quantitative methods will enable further evaluation of the contribution of ANP‐dependent microvascular beds (such as gastro‐intestinal tract) to plasma volume regulation.

Collaboration


Dive into the Olav Tenstad's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Knut Aukland

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge