Ole Caprani
Aarhus University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ole Caprani.
Computing | 1980
Ole Caprani; Kaj Madsen
An interval extension of a function written in the centered form or the mean value form offers a second order approximation to the range of values of the function over an interval. However, the two forms differ with respect to inclusion monotonicity; the mean value form is inclusion monotone while the centered form is not. This is demonstrated in the following paper. Further, the mean value form is more generally applicable, and a mean value form for an integral operator is considered. It is shown that this form is also a second order inclusion monotone approximation.ZusammenfassungSowohl in der zentrierten Form wie auch in der Mittelwertform liefert die Intervall-Fortsetzung einer Funktion eine Näherung zweiter Ordnung für den Wertebereich der Funktion über einem Intervall. Die beiden Formen unterscheiden sich jedoch bezüglich der Einschließungsmonotonie: Die Mittelwertform ist einschließungsmonoton, die zentrierte Form dagegen i.a. nicht, wie in der Arbeit gezeigt wird. Ferner ist die Mittelwertform allgemeiner anwendbar; eine Mittelwertform für einen Integraloperator wird diskutiert, und es wird gezeigt, daß sie ebenfalls eine einschließungsmonotone Näherung zweiter Ordnung ist.
Bit Numerical Mathematics | 1978
Ole Caprani; Kaj Madsen
The paper discusses a technique for handling numerical, iterative processes that combines the efficiency of ordinary floating-point iterations with the accuracy control that may be obtained by iterations in interval arithmetic. As illustration the technique is used for the solution of fixed point problems in one and several variables.
Journal of Theoretical Biology | 1975
Ole Caprani; Edda Sveinsdottir; Niels A. Lassen
Abstract A method for biexponesitial fitting of decay type curves is described. Basically the four unknowns are calculated from four curve parameters, viz. the initial slope (S), the initial height (H), the area (A) and the first time moment (M) with extrapolation to infinity being accomplished algebraically. The SHAM algorithm was considerably faster than a conventional iterative regression analysis (Gauss) and the results of the two methods were quite comparable both in synthetic and real data. The latter stemmed from 133xenon wash-out studies of regional blood flow in the human brain. Fast analysis of such data was the primary aim of developing the new method.
Siam Journal on Mathematical Analysis | 1981
Ole Caprani; Kaj Madsen; L. B. Rall
An interval function Y assigns an interval
Bit Numerical Mathematics | 1975
Ole Caprani
Y(x) = (y(x),\bar y(x)]
Bit Numerical Mathematics | 1975
Ole Caprani; Kaj Madsen
in the extended real number system to each x in its interval
Bit Numerical Mathematics | 1971
Ole Caprani
X = [a,b]
Interval '96 Wurzburg | 1997
Ole Caprani; Kaj Madsen; Ole Stauning
of definition. The integral of Y over
Interval Mathematics 1980 | 1980
Ole Caprani; Kaj Madsen
[a,b]
International Workshop in Cultural Robotics | 2015
Christian Ø. Laursen; Søren Pedersen; Timothy Merritt; Ole Caprani
is taken to be the interval