Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ole Kristian Tørresen is active.

Publication


Featured researches published by Ole Kristian Tørresen.


BMC Evolutionary Biology | 2010

A phylogenetic mosaic plastid proteome and unusual plastid-targeting signals in the green-colored dinoflagellate Lepidodinium chlorophorum

Marianne A. Minge; Kamran Shalchian-Tabrizi; Ole Kristian Tørresen; Kiyotaka Takishita; Ian Probert; Yuji Inagaki; Dag Klaveness; Kjetill S. Jakobsen

BackgroundPlastid replacements through secondary endosymbioses include massive transfer of genes from the endosymbiont to the host nucleus and require a new targeting system to enable transport of the plastid-targeted proteins across 3-4 plastid membranes. The dinoflagellates are the only eukaryotic lineage that has been shown to have undergone several plastid replacement events, and this group is thus highly relevant for studying the processes involved in plastid evolution. In this study, we analyzed the phylogenetic origin and N-terminal extensions of plastid-targeted proteins from Lepidodinium chlorophorum, a member of the only dinoflagellate genus that harbors a green secondary plastid rather than the red algal-derived, peridinin-containing plastid usually found in photosynthetic dinoflagellates.ResultsWe sequenced 4,746 randomly picked clones from a L. chlorophorum cDNA library. 22 of the assembled genes were identified as genes encoding proteins functioning in plastids. Some of these were of green algal origin. This confirms that genes have been transferred from the plastid to the host nucleus of L. chlorophorum and indicates that the plastid is fully integrated as an organelle in the host. Other nuclear-encoded plastid-targeted protein genes, however, are clearly not of green algal origin, but have been derived from a number of different algal groups, including dinoflagellates, streptophytes, heterokonts, and red algae. The characteristics of N-terminal plastid-targeting peptides of all of these genes are substantially different from those found in peridinin-containing dinoflagellates and green algae.ConclusionsL. chlorophorum expresses plastid-targeted proteins with a range of different origins, which probably arose through endosymbiotic gene transfer (EGT) and horizontal gene transfer (HGT). The N-terminal extension of the genes is different from the extensions found in green alga and other dinoflagellates (peridinin- and haptophyte plastids). These modifications have likely enabled the mosaic proteome of L. chlorophorum.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Ancestral duplications and highly dynamic opsin gene evolution in percomorph fishes

Fabio Cortesi; Zuzana Musilová; Sara M. Stieb; Nathan S. Hart; Ulrike E. Siebeck; Martin Malmstrøm; Ole Kristian Tørresen; Sissel Jentoft; Karen L. Cheney; N. Justin Marshall; Karen L. Carleton; Walter Salzburger

Significance Gene and whole-genome duplications are important evolutionary forces promoting organismal diversification. Teleost fishes, for example, possess many gene duplicates responsible for photoreception (opsins), which emerged through gene duplication and allow fishes to adapt to the various light conditions of the aquatic environment. Here, we reevaluate the evolutionary history of the violet-blue–sensitive opsins [short wavelength-sensitive 2 (SWS2)] in modern teleosts using next generation genome sequencing. We uncover a gene duplication event specific to the most diverse lineage of vertebrates (the percomorphs) and show that SWS2 evolution was highly dynamic and involved gene loss, pseudogenization, and gene conversion. We, thus, clarify previous discrepancies regarding opsin annotations. Our study highlights the importance of integrative approaches to help us understand how species adapt and diversify. Single-gene and whole-genome duplications are important evolutionary mechanisms that contribute to biological diversification by launching new genetic raw material. For example, the evolution of animal vision is tightly linked to the expansion of the opsin gene family encoding light-absorbing visual pigments. In teleost fishes, the most species-rich vertebrate group, opsins are particularly diverse and key to the successful colonization of habitats ranging from the bioluminescence-biased but basically dark deep sea to clear mountain streams. In this study, we report a previously unnoticed duplication of the violet-blue short wavelength-sensitive 2 (SWS2) opsin, which coincides with the radiation of highly diverse percomorph fishes, permitting us to reinterpret the evolution of this gene family. The inspection of close to 100 fish genomes revealed that, triggered by frequent gene conversion between duplicates, the evolutionary history of SWS2 is rather complex and difficult to predict. Coincidentally, we also report potential cases of gene resurrection in vertebrate opsins, whereby pseudogenized genes were found to convert with their functional paralogs. We then identify multiple novel amino acid substitutions that are likely to have contributed to the adaptive differentiation between SWS2 copies. Finally, using the dusky dottyback Pseudochromis fuscus, we show that the newly discovered SWS2A duplicates can contribute to visual adaptation in two ways: by gaining sensitivities to different wavelengths of light and by being differentially expressed between ontogenetic stages. Thus, our study highlights the importance of comparative approaches in gaining a comprehensive view of the dynamics underlying gene family evolution and ultimately, animal diversification.


Nature Genetics | 2016

Evolution of the immune system influences speciation rates in teleost fishes

Martin Malmstrøm; Michael Matschiner; Ole Kristian Tørresen; Bastiaan Star; Lars-Gustav Snipen; Thomas F. Hansen; Helle Tessand Baalsrud; Reinhold Hanel; Walter Salzburger; Nils Christian Stenseth; Kjetill S. Jakobsen; Sissel Jentoft

Teleost fishes constitute the most species-rich vertebrate clade and exhibit extensive genetic and phenotypic variation, including diverse immune defense strategies. The genomic basis of a particularly aberrant strategy is exemplified by Atlantic cod, in which a loss of major histocompatibility complex (MHC) II functionality coincides with a marked expansion of MHC I genes. Through low-coverage genome sequencing (9–39×), assembly and comparative analyses for 66 teleost species, we show here that MHC II is missing in the entire Gadiformes lineage and thus was lost once in their common ancestor. In contrast, we find that MHC I gene expansions have occurred multiple times, both inside and outside this clade. Moreover, we identify an association between high MHC I copy number and elevated speciation rates using trait-dependent diversification models. Our results extend current understanding of the plasticity of the adaptive immune system and suggest an important role for immune-related genes in animal diversification.


BMC Genomics | 2017

An improved genome assembly uncovers prolific tandem repeats in Atlantic cod

Ole Kristian Tørresen; Bastiaan Star; Sissel Jentoft; William Brynildsen Reinar; Harald Grove; Jason R. Miller; Brian Walenz; James Knight; Jenny M. Ekholm; Paul Peluso; Rolf B. Edvardsen; Ave Tooming-Klunderud; Morten Skage; Sigbjørn Lien; Kjetill S. Jakobsen

BackgroundThe first Atlantic cod (Gadus morhua) genome assembly published in 2011 was one of the early genome assemblies exclusively based on high-throughput 454 pyrosequencing. Since then, rapid advances in sequencing technologies have led to a multitude of assemblies generated for complex genomes, although many of these are of a fragmented nature with a significant fraction of bases in gaps. The development of long-read sequencing and improved software now enable the generation of more contiguous genome assemblies.ResultsBy combining data from Illumina, 454 and the longer PacBio sequencing technologies, as well as integrating the results of multiple assembly programs, we have created a substantially improved version of the Atlantic cod genome assembly. The sequence contiguity of this assembly is increased fifty-fold and the proportion of gap-bases has been reduced fifteen-fold. Compared to other vertebrates, the assembly contains an unusual high density of tandem repeats (TRs). Indeed, retrospective analyses reveal that gaps in the first genome assembly were largely associated with these TRs. We show that 21% of the TRs across the assembly, 19% in the promoter regions and 12% in the coding sequences are heterozygous in the sequenced individual.ConclusionsThe inclusion of PacBio reads combined with the use of multiple assembly programs drastically improved the Atlantic cod genome assembly by successfully resolving long TRs. The high frequency of heterozygous TRs within or in the vicinity of genes in the genome indicate a considerable standing genomic variation in Atlantic cod populations, which is likely of evolutionary importance.


Science Advances | 2017

The genomic mosaicism of hybrid speciation.

Tore O. Elgvin; Cassandra Trier; Ole Kristian Tørresen; Ingerid Julie Hagen; Sigbjørn Lien; Mark Ravinet; Henrik Jensen; Glenn-Peter Sætre

Genomic mosaicism and novel divergence have facilitated the creation and maintenance of a hybrid species, the Italian sparrow. Hybridization is widespread in nature and, in some instances, can result in the formation of a new hybrid species. We investigate the genetic foundation of this poorly understood process through whole-genome analysis of the hybrid Italian sparrow and its progenitors. We find overall balanced yet heterogeneous levels of contribution from each parent species throughout the hybrid genome and identify areas of novel divergence in the hybrid species exhibiting signals consistent with balancing selection. High-divergence areas are disproportionately located on the Z chromosome and overrepresented in gene networks relating to key traits separating the focal species, which are likely involved in reproductive barriers and/or species-specific adaptations. Of special interest are genes and functional groups known to affect body patterning, beak morphology, and the immune system, which are important features of diversification and fitness. We show that a combination of mosaic parental inheritance and novel divergence within the hybrid lineage has facilitated the origin and maintenance of an avian hybrid species.


Scientific Data | 2017

Whole genome sequencing data and de novo draft assemblies for 66 teleost species

Martin Malmstrøm; Michael Matschiner; Ole Kristian Tørresen; Kjetill S. Jakobsen; Sissel Jentoft

Teleost fishes comprise more than half of all vertebrate species, yet genomic data are only available for 0.2% of their diversity. Here, we present whole genome sequencing data for 66 new species of teleosts, vastly expanding the availability of genomic data for this important vertebrate group. We report on de novo assemblies based on low-coverage (9–39×) sequencing and present detailed methodology for all analyses. To facilitate further utilization of this data set, we present statistical analyses of the gene space completeness and verify the expected phylogenetic position of the sequenced genomes in a large mitogenomic context. We further present a nuclear marker set used for phylogenetic inference and evaluate each gene tree in relation to the species tree to test for homogeneity in the phylogenetic signal. Collectively, these analyses illustrate the robustness of this highly diverse data set and enable extensive reuse of the selected phylogenetic markers and the genomic data in general. This data set covers all major teleost lineages and provides unprecedented opportunities for comparative studies of teleosts.


Scientific Reports | 2016

Evolutionary redesign of the Atlantic cod (Gadus morhua L.) Toll-like receptor repertoire by gene losses and expansions.

Monica Hongrø Solbakken; Ole Kristian Tørresen; Marit Seppola; Tone F. Gregers; Kjetill S. Jakobsen; Sissel Jentoft

Genome sequencing of the teleost Atlantic cod demonstrated loss of the Major Histocompatibility Complex (MHC) class II, an extreme gene expansion of MHC class I and gene expansions and losses in the innate pattern recognition receptor (PRR) family of Toll-like receptors (TLR). In a comparative genomic setting, using an improved version of the genome, we characterize PRRs in Atlantic cod with emphasis on TLRs demonstrating the loss of TLR1/6, TLR2 and TLR5 and expansion of TLR7, TLR8, TLR9, TLR22 and TLR25. We find that Atlantic cod TLR expansions are strongly influenced by diversifying selection likely to increase the detectable ligand repertoire through neo- and subfunctionalization. Using RNAseq we find that Atlantic cod TLRs display likely tissue or developmental stage-specific expression patterns. In a broader perspective, a comprehensive vertebrate TLR phylogeny reveals that the Atlantic cod TLR repertoire is extreme with regards to losses and expansions compared to other teleosts. In addition we identify a substantial shift in TLR repertoires following the evolutionary transition from an aquatic vertebrate (fish) to a terrestrial (tetrapod) life style. Collectively, our findings provide new insight into the function and evolution of TLRs in Atlantic cod as well as the evolutionary history of vertebrate innate immunity.


bioRxiv | 2016

An improved genome assembly uncovers a prolific tandem repeat structure in Atlantic cod

Ole Kristian Tørresen; Bastiaan Star; Sissel Jentoft; William Brynildsen Reinar; Harald Grove; Jason R. Miller; Brian Walenz; James Knight; Jenny M. Ekholm; Paul Peluso; Rolf B. Edvardsen; Ave Tooming-Klunderud; Morten Skage; Sigbjørn Lien; Kjetill S. Jakobsen

Background: The first Atlantic cod (Gadus morhua) genome assembly published in 2011 was one of the early genome assemblies exclusively based on high-throughput 454 pyrosequencing. Since then, rapid advances in sequencing technologies have led to a multitude of assemblies generated for complex genomes, although many of these are of a fragmented nature with a significant fraction of bases in gaps. The development of long-read sequencing and improved software now enable the generation of more contiguous genome assemblies. Results: By combining data from Illumina, 454 and the longer PacBio sequencing technologies, as well as integrating the results of multiple assembly programs, we have created a substantially improved version of the Atlantic cod genome assembly. The sequence contiguity of this assembly is increased fifty-fold and the proportion of gap-bases has been reduced fifteen-fold. Compared to other vertebrates, the assembly contains an unusual high density of tandem repeats (TRs). Indeed, retrospective analyses reveal that gaps in the first genome assembly were largely associated with these TRs. We show that 21 % of the TRs across the assembly, 19 % in the promoter regions and 12 % in the coding sequences are heterozygous in the sequenced individual. Conclusions: The inclusion of PacBio reads combined with the use of multiple assembly programs drastically improved the Atlantic cod genome assembly by successfully resolving long TRs. The high frequency of heterozygous TRs within or in the vicinity of genes in the genome indicate a considerable standing genomic variation in Atlantic cod populations, which is likely of evolutionary importance.


Molecular Biology and Evolution | 2018

De Novo Gene Evolution of Antifreeze Glycoproteins in Codfishes Revealed by Whole Genome Sequence Data

Helle Tessand Baalsrud; Ole Kristian Tørresen; Monica Hongrø Solbakken; Walter Salzburger; Reinhold Hanel; Kjetill S. Jakobsen; Sissel Jentoft

&NA; New genes can arise through duplication of a pre‐existing gene or de novo from non‐coding DNA, providing raw material for evolution of new functions in response to a changing environment. A prime example is the independent evolution of antifreeze glycoprotein genes (afgps) in the Arctic codfishes and Antarctic notothenioids to prevent freezing. However, the highly repetitive nature of these genes complicates studies of their organization. In notothenioids, afgps evolved from an extant gene, yet the evolutionary origin of afgps in codfishes is unknown. Here, we demonstrate that afgps in codfishes have evolved de novo from non‐coding DNA 13–18 Ma, coinciding with the cooling of the Northern Hemisphere. Using whole‐genome sequence data from several codfishes and notothenioids, we find higher copy number of afgp in species exposed to more severe freezing suggesting a gene dosage effect. Notably, antifreeze function is lost in one lineage of codfishes analogous to the afgp losses in non‐Antarctic notothenioids. This indicates that selection can eliminate the antifreeze function when freezing is no longer imminent. In addition, we show that evolution of afgp‐assisting antifreeze potentiating protein genes (afpps) in notothenioids coincides with origin and lineage‐specific losses of afgp. The origin of afgps in codfishes is one of the first examples of an essential gene born from non‐coding DNA in a non‐model species. Our study underlines the power of comparative genomics to uncover past molecular signatures of genome evolution, and further highlights the impact of de novo gene origin in response to a changing selection regime.


BMC Genomics | 2018

Loss of stomach, loss of appetite? Sequencing of the ballan wrasse ( Labrus bergylta ) genome and intestinal transcriptomic profiling illuminate the evolution of loss of stomach function in fish

Kai Kristoffer Lie; Ole Kristian Tørresen; Monica Hongrø Solbakken; Ivar Rønnestad; Ave Tooming-Klunderud; Sissel Jentoft; Øystein Sæle

BackgroundThe ballan wrasse (Labrus bergylta) belongs to a large teleost family containing more than 600 species showing several unique evolutionary traits such as lack of stomach and hermaphroditism. Agastric fish are found throughout the teleost phylogeny, in quite diverse and unrelated lineages, indicating stomach loss has occurred independently multiple times in the course of evolution. By assembling the ballan wrasse genome and transcriptome we aimed to determine the genetic basis for its digestive system function and appetite regulation. Among other, this knowledge will aid the formulation of aquaculture diets that meet the nutritional needs of agastric species.ResultsLong and short read sequencing technologies were combined to generate a ballan wrasse genome of 805 Mbp. Analysis of the genome and transcriptome assemblies confirmed the absence of genes that code for proteins involved in gastric function. The gene coding for the appetite stimulating protein ghrelin was also absent in wrasse. Gene synteny mapping identified several appetite-controlling genes and their paralogs previously undescribed in fish. Transcriptome profiling along the length of the intestine found a declining expression gradient from the anterior to the posterior, and a distinct expression profile in the hind gut.ConclusionsWe showed gene loss has occurred for all known genes related to stomach function in the ballan wrasse, while the remaining functions of the digestive tract appear intact. The results also show appetite control in ballan wrasse has undergone substantial changes. The loss of ghrelin suggests that other genes, such as motilin, may play a ghrelin like role. The wrasse genome offers novel insight in to the evolutionary traits of this large family. As the stomach plays a major role in protein digestion, the lack of genes related to stomach digestion in wrasse suggests it requires formulated diets with higher levels of readily digestible protein than those for gastric species.

Collaboration


Dive into the Ole Kristian Tørresen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge