Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ole Seehausen is active.

Publication


Featured researches published by Ole Seehausen.


Nature | 2008

Speciation through sensory drive in cichlid fish

Ole Seehausen; Yohey Terai; Isabel S. Magalhaes; Karen L. Carleton; Hillary D. J. Mrosso; Ryutaro Miyagi; Inke van der Sluijs; Maria Victoria Schneider; Martine E. Maan; Hidenori Tachida; Hiroo Imai; Norihiro Okada

Theoretically, divergent selection on sensory systems can cause speciation through sensory drive. However, empirical evidence is rare and incomplete. Here we demonstrate sensory drive speciation within island populations of cichlid fish. We identify the ecological and molecular basis of divergent evolution in the cichlid visual system, demonstrate associated divergence in male colouration and female preferences, and show subsequent differentiation at neutral loci, indicating reproductive isolation. Evidence is replicated in several pairs of sympatric populations and species. Variation in the slope of the environmental gradients explains variation in the progress towards speciation: speciation occurs on all but the steepest gradients. This is the most complete demonstration so far of speciation through sensory drive without geographical isolation. Our results also provide a mechanistic explanation for the collapse of cichlid fish species diversity during the anthropogenic eutrophication of Lake Victoria.


Proceedings of the Royal Society of London B: Biological Sciences | 2006

African cichlid fish: a model system in adaptive radiation research

Ole Seehausen

The African cichlid fish radiations are the most diverse extant animal radiations and provide a unique system to test predictions of speciation and adaptive radiation theory. The past few years have seen major advances in the phylogenetics, evolutionary biogeography and ecology of cichlid fish. Most of this work has concentrated on the most diverse radiations. Unfortunately, a large number of small radiations and ‘non-radiations’ have been overlooked, potentially limiting the contribution of the cichlid system to our understanding of speciation and adaptive radiation. I have reviewed the literature to identify 33 intralacustrine radiations and 76 failed radiations. For as many as possible I collected information on lake size, age and phylogenetic relationships. I use these data to address two questions: (i) whether the rate of speciation and the resulting species richness are related to temporal and spatial variation in ecological opportunity and (ii) whether the likelihood of undergoing adaptive radiation is similar for different African cichlid lineages. The former is a key prediction of the ecological theory of adaptive radiation that has been presumed true but remains untested for cichlid radiations. The second is based on the hypothesis that the propensity of cichlids to radiate is due to a key evolutionary innovation shared by all African cichlids. The evidence suggests that speciation rate declines through time as niches get filled up during adaptive radiation: young radiations and early stages of old radiations are characterized by high rates of speciation, whereas at least 0.5 Myr into a radiation speciation becomes a lot less frequent. The number of species in cichlid radiations increases with lake size, supporting the prediction that species diversity increases with habitat heterogeneity, but also with opportunity for isolation by distance. Finally, the data suggest that the propensity to radiate within lakes is a derived property that evolved during the evolutionary history of some African cichlids, and the appearance of which does not coincide with the appearance of proposed key innovations in morphology and life history.


Evolution | 2010

Early bursts of body size and shape evolution are rare in comparative data.

Luke J. Harmon; Jonathan B. Losos; T. Jonathan Davies; Rosemary G. Gillespie; John L. Gittleman; W. Bryan Jennings; Kenneth H. Kozak; Mark A. McPeek; Franck Moreno-Roark; Thomas J. Near; Andy Purvis; Robert E. Ricklefs; Dolph Schluter; James A. Schulte; Ole Seehausen; Brian L. Sidlauskas; Omar Torres-Carvajal; Jason T. Weir; Arne Ø. Mooers

George Gaylord Simpson famously postulated that much of lifes diversity originated as adaptive radiations—more or less simultaneous divergences of numerous lines from a single ancestral adaptive type. However, identifying adaptive radiations has proven difficult due to a lack of broad‐scale comparative datasets. Here, we use phylogenetic comparative data on body size and shape in a diversity of animal clades to test a key model of adaptive radiation, in which initially rapid morphological evolution is followed by relative stasis. We compared the fit of this model to both single selective peak and random walk models. We found little support for the early‐burst model of adaptive radiation, whereas both other models, particularly that of selective peaks, were commonly supported. In addition, we found that the net rate of morphological evolution varied inversely with clade age. The youngest clades appear to evolve most rapidly because long‐term change typically does not attain the amount of divergence predicted from rates measured over short time scales. Across our entire analysis, the dominant pattern was one of constraints shaping evolution continually through time rather than rapid evolution followed by stasis. We suggest that the classical model of adaptive radiation, where morphological evolution is initially rapid and slows through time, may be rare in comparative data.


Behavioral Ecology and Sociobiology | 1998

The effect of male coloration on female mate choice in closely related Lake Victoria cichlids (Haplochromis nyererei complex)

Ole Seehausen; Jacques J. M. van Alphen

Abstract We studied the effect of male coloration on interspecific female mate choice in two closely related species of haplochromine cichlids from Lake Victoria. The species differ primarily in male coloration. Males of one species are red, those of the other are blue. We recorded the behavioral responses of females to males of both species in paired male trials under white light and under monochromatic light, under which the interspecific differences in coloration were masked. Females of both species exhibited species-assortative mate choice when colour differences were visible, but chose non-assortatively when colour differences were masked by light conditions. Neither male behaviour nor overall female response frequencies differed between light treatments. That female preferences could be altered by manipulating the perceived colour pattern implies that the colour itself is used in interspecific mate choice, rather than other characters. Hence, male coloration in haplochromine cichlids does underlie sexual selection by direct mate choice, involving the capacity for individual assessment of potential mates by the female. Females of both species responded more frequently to blue males under monochromatic light. Blue males were larger and displayed more than red males. This implies a hierarchy of choice criteria. Females may use male display rates, size, or both when colour is unavailable. Where available, colour has gained dominance over other criteria. This may explain rapid speciation by sexual selection on male coloration, as proposed in a recent mathematical model.


Nature Reviews Genetics | 2014

Genomics and the origin of species

Ole Seehausen; Roger K. Butlin; Irene Keller; Catherine E. Wagner; Janette W. Boughman; Paul A. Hohenlohe; Catherine L. Peichel; Glenn-Peter Sætre; Claudia Bank; Åke Brännström; Alan Brelsford; Christopher S. Clarkson; Fabrice Eroukhmanoff; Jeffrey L. Feder; Martin C. Fischer; Andrew D. Foote; Paolo Franchini; Chris D. Jiggins; Felicity C. Jones; Anna K. Lindholm; Kay Lucek; Martine E. Maan; David Alexander Marques; Simon H. Martin; Blake Matthews; Joana Meier; Markus Möst; Michael W. Nachman; Etsuko Nonaka; Diana J. Rennison

Speciation is a fundamental evolutionary process, the knowledge of which is crucial for understanding the origins of biodiversity. Genomic approaches are an increasingly important aspect of this research field. We review current understanding of genome-wide effects of accumulating reproductive isolation and of genomic properties that influence the process of speciation. Building on this work, we identify emergent trends and gaps in our understanding, propose new approaches to more fully integrate genomics into speciation research, translate speciation theory into hypotheses that are testable using genomic tools and provide an integrative definition of the field of speciation genomics.


Nature | 2014

The genomic substrate for adaptive radiation in African cichlid fish

David Brawand; Catherine E. Wagner; Yang I. Li; Milan Malinsky; Irene Keller; Shaohua Fan; Oleg Simakov; Alvin Yu Jin Ng; Zhi Wei Lim; Etienne Bezault; Jason Turner-Maier; Jeremy A. Johnson; Rosa M. Alcazar; Hyun Ji Noh; Pamela Russell; Bronwen Aken; Jessica Alföldi; Chris T. Amemiya; Naoual Azzouzi; Jean-François Baroiller; Frédérique Barloy-Hubler; Aaron M. Berlin; Ryan F. Bloomquist; Karen L. Carleton; Matthew A. Conte; Helena D'Cotta; Orly Eshel; Leslie Gaffney; Francis Galibert; Hugo F. Gante

Cichlid fishes are famous for large, diverse and replicated adaptive radiations in the Great Lakes of East Africa. To understand the molecular mechanisms underlying cichlid phenotypic diversity, we sequenced the genomes and transcriptomes of five lineages of African cichlids: the Nile tilapia (Oreochromis niloticus), an ancestral lineage with low diversity; and four members of the East African lineage: Neolamprologus brichardi/pulcher (older radiation, Lake Tanganyika), Metriaclima zebra (recent radiation, Lake Malawi), Pundamilia nyererei (very recent radiation, Lake Victoria), and Astatotilapia burtoni (riverine species around Lake Tanganyika). We found an excess of gene duplications in the East African lineage compared to tilapia and other teleosts, an abundance of non-coding element divergence, accelerated coding sequence evolution, expression divergence associated with transposable element insertions, and regulation by novel microRNAs. In addition, we analysed sequence data from sixty individuals representing six closely related species from Lake Victoria, and show genome-wide diversifying selection on coding and regulatory variants, some of which were recruited from ancient polymorphisms. We conclude that a number of molecular mechanisms shaped East African cichlid genomes, and that amassing of standing variation during periods of relaxed purifying selection may have been important in facilitating subsequent evolutionary diversification.


Molecular Ecology | 2008

Speciation reversal and biodiversity dynamics with hybridization in changing environments

Ole Seehausen; Gaku Takimoto; Denis Roy; Jukka Jokela

A considerable fraction of the worlds biodiversity is of recent evolutionary origin and has evolved as a by‐product of, and is maintained by, divergent adaptation in heterogeneous environments. Conservationists have paid attention to genetic homogenization caused by human‐induced translocations (e.g. biological invasions and stocking), and to the importance of environmental heterogeneity for the ecological coexistence of species. However, far less attention has been paid to the consequences of loss of environmental heterogeneity to the genetic coexistence of sympatric species. Our review of empirical observations and our theoretical considerations on the causes and consequences of interspecific hybridization suggest that a loss of environmental heterogeneity causes a loss of biodiversity through increased genetic admixture, effectively reversing speciation. Loss of heterogeneity relaxes divergent selection and removes ecological barriers to gene flow between divergently adapted species, promoting interspecific introgressive hybridization. Since heterogeneity of natural environments is rapidly deteriorating in most biomes, the evolutionary ecology of speciation reversal ought to be fully integrated into conservation biology.


Ecology Letters | 2011

Ecology, sexual selection and speciation

Martine E. Maan; Ole Seehausen

The spectacular diversity in sexually selected traits among animal taxa has inspired the hypothesis that divergent sexual selection can drive speciation. Unfortunately, speciation biologists often consider sexual selection in isolation from natural selection, even though sexually selected traits evolve in an ecological context: both preferences and traits are often subject to natural selection. Conversely, while behavioural ecologists may address ecological effects on sexual communication, they rarely measure the consequences for population divergence. Herein, we review the empirical literature addressing the mechanisms by which natural selection and sexual selection can interact during speciation. We find that convincing evidence for any of these scenarios is thin. However, the available data strongly support various diversifying effects that emerge from interactions between sexual selection and environmental heterogeneity. We suggest that evaluating the evolutionary consequences of these effects requires a better integration of behavioural, ecological and evolutionary research.


Molecular Ecology | 2008

How many species of cichlid fishes are there in African lakes

George F. Turner; Ole Seehausen; Mairi E. Knight; Charlotte J. Allender; Rosanna L. Robinson

The endemic cichlid fishes of Lakes Malawi, Tanganyika and Victoria are textbook examples of explosive speciation and adaptive radiation, and their study promises to yield important insights into these processes. Accurate estimates of species richness of lineages in these lakes, and elsewhere, will be a necessary prerequisite for a thorough comparative analysis of the intrinsic and extrinsic factors influencing rates of diversification. This review presents recent findings on the discoveries of new species and species flocks and critically appraises the relevant evidence on species richness from recent studies of polymorphism and assortative mating, generally using behavioural and molecular methods. Within the haplochromines, the most species‐rich lineage, there are few reported cases of postzygotic isolation, and these are generally among allopatric taxa that are likely to have diverged a relatively long time in the past. However, many taxa, including many which occur sympatrically and do not interbreed in nature, produce viable, fertile hybrids. Prezygotic barriers are more important, and persist in laboratory conditions in which environmental factors have been controlled, indicating the primary importance of direct mate preferences. Studies to date indicate that estimates of alpha (within‐site) diversity appear to be robust. Although within‐species colour polymorphisms are common, these have been taken into account in previous estimates of species richness. However, overall estimates of species richness in Lakes Malawi and Victoria are heavily dependent on the assignation of species status to allopatric populations differing in male colour. Appropriate methods for testing the specific status of allopatric cichlid taxa are reviewed and preliminary results presented.


Nature | 2012

Ecological opportunity and sexual selection together predict adaptive radiation

Catherine E. Wagner; Luke J. Harmon; Ole Seehausen

A fundamental challenge to our understanding of biodiversity is to explain why some groups of species undergo adaptive radiations, diversifying extensively into many and varied species, whereas others do not. Both extrinsic environmental factors (for example, resource availability, climate) and intrinsic lineage-specific traits (for example, behavioural or morphological traits, genetic architecture) influence diversification, but few studies have addressed how such factors interact. Radiations of cichlid fishes in the African Great Lakes provide some of the most dramatic cases of species diversification. However, most cichlid lineages in African lakes have not undergone adaptive radiations. Here we compile data on cichlid colonization and diversification in 46 African lakes, along with lake environmental features and information about the traits of colonizing cichlid lineages, to investigate why adaptive radiation does and does not occur. We find that extrinsic environmental factors related to ecological opportunity and intrinsic lineage-specific traits related to sexual selection both strongly influence whether cichlids radiate. Cichlids are more likely to radiate in deep lakes, in regions with more incident solar radiation and in lakes where there has been more time for diversification. Weak or negative associations between diversification and lake surface area indicate that cichlid speciation is not constrained by area, in contrast to diversification in many terrestrial taxa. Among the suite of intrinsic traits that we investigate, sexual dichromatism, a surrogate for the intensity of sexual selection, is consistently positively associated with diversification. Thus, for cichlids, it is the coincidence between ecological opportunity and sexual selection that best predicts whether adaptive radiation will occur. These findings suggest that adaptive radiation is predictable, but only when species traits and environmental factors are jointly considered.

Collaboration


Dive into the Ole Seehausen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pascal Vonlanthen

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Salome Mwaiko

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Blake Matthews

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge