Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Oleg A. Mayboroda is active.

Publication


Featured researches published by Oleg A. Mayboroda.


Biochimica et Biophysica Acta | 2012

Lipid and lipid mediator profiling of human synovial fluid in rheumatoid arthritis patients by means of LC-MS/MS.

Martin Giera; Andreea Ioan-Facsinay; René E. M. Toes; Fei Gao; Jesmond Dalli; André M. Deelder; Charles N. Serhan; Oleg A. Mayboroda

Human synovial fluid (SF) provides nutrition and lubrication to the articular cartilage. Particularly in arthritic diseases, SF is extensively accumulating in the synovial junction. During the last decade lipids have attracted considerable attention as their role in the development and resolution of diseases became increasingly recognized. Here, we describe a capillary LC-MS/MS screening platform that was used for the untargeted screening of lipids present in human SF of rheumatoid arthritis (RA) patients. Using this platform we give a detailed overview of the lipids and lipid-derived mediators present in the SF of RA patients. Almost 70 different lipid components from distinct lipid classes were identified and quantification was achieved for the lysophosphatidylcholine and phosphatidylcholine species. In addition, we describe a targeted LC-MS/MS lipid mediator metabolomics strategy for the detection, identification and quantification of maresin 1, lipoxin A(4) and resolvin D5 in SF from RA patients. Additionally, we present the identification of 5S,12S-diHETE as a major marker of lipoxygenase pathway interactions in the investigated SF samples. These results are the first to provide a comprehensive approach to the identification and profiling of lipids and lipid mediators present in SF and to describe the presence of key anti-inflammatory and pro-resolving lipid mediators identified in SF from RA patients.


Analytical Chemistry | 2010

High Capacity Capillary Electrophoresis-Electrospray Ionization Mass Spectrometry: Coupling a Porous Sheathless Interface with Transient-Isotachophoresis

Jean-Marc Busnel; Bart Schoenmaker; Rawi Ramautar; Alegría Carrasco-Pancorbo; Chitra K. Ratnayake; Jerald S. Feitelson; Jeff Chapman; André M. Deelder; Oleg A. Mayboroda

A sheathless interface making use of a porous tip has been used for coupling capillary electrophoresis and electrospray ionization mass spectrometry. First, effective flow rates using the interface have been characterized. It was found that the interface is capable of generating a stable spray with flow rates ranging from below 10 nL/min to >340 nL/min, enabling its use in either the mass or concentration-sensitive region of the electrospray process. Subsequently, by analyzing peptide mixtures of increasing complexity, we have demonstrated that this platform provides exquisite sensitivity enabling the detection of very low amounts of materials with very high resolving power. Transient isotachophoresis (t-ITP) can also be integrated with this setup to increase the mass loading of the system while maintaining peak efficiency and resolution. Concentration limits of detection in the subnanomolar or nanomolar range can be achieved with or without t-ITP, respectively. The application of a vacuum at the inlet of the separation capillary further allowed the peak capacity of the system to be improved while also enhancing its efficiency. As a final step in this study, it was demonstrated that the intrinsic properties of the interface allows the use of coated noncharged surfaces so that very high peak capacities can be achieved.


Analytical Chemistry | 2012

Enhancing the coverage of the urinary metabolome by sheathless capillary electrophoresis-mass spectrometry.

Rawi Ramautar; Jean-Marc Busnel; André M. Deelder; Oleg A. Mayboroda

Sheathless capillary electrophoresis-mass spectrometry (CE-MS), using a porous tip sprayer, is proposed for the first time for highly sensitive metabolic profiling of human urine. A representative metabolite mixture and human urine were used for evaluation of the sheathless CE-MS platform. For test compounds, relative standard deviations (RSDs) for migration times and peak areas were below 2% and 12%, respectively, and an injection volume of only ∼8 nL resulted in detection limits between 11 and 120 nM. Approximately 900 molecular features were detected in human urine by sheathless CE-MS whereas about 300 molecular features were found with classical sheath-liquid CE-MS. This difference can probably be attributed to an improved ionization efficiency and increased sensitivity at low flow-rate conditions. The integration of transient-isotachophoresis (t-ITP) as an in-capillary preconcentration procedure in sheathless CE-MS further resulted in subnanomolar limits of detection for compounds of the metabolite mixture, and more than 1300 molecular features were observed in urine. Compared to the classical CE-MS approaches, the integration of t-ITP combined with the use of a sheathless interface provides up to 2 orders of magnitude sensitivity improvement. Hence, sheathless CE-MS can be used for in-depth metabolic profiling of biological samples, and we anticipate that this approach will yield unique information in the field of metabolomics.


Analytical Chemistry | 2012

Ultra-low flow electrospray ionization-mass spectrometry for improved ionization efficiency in phosphoproteomics.

Anthonius A. M. Heemskerk; Jean-Marc Busnel; Bart Schoenmaker; Rico Derks; Oleg I. Klychnikov; Paul J. Hensbergen; André M. Deelder; Oleg A. Mayboroda

The potential benefits of ultra-low flow electrospray ionization (ESI) for the analysis of phosphopeptides in proteomics was investigated. First, the relative flow dependent ionization efficiency of nonphosphorylated vs multiplyphosphorylated peptides was characterized by infusion of a five synthetic peptide mix with zero to four phophorylation sites at flow rates ranging from 4.5 to 500 nL/min. Most importantly, similar to what was found earlier by Schmidt et al., it has been verified that at flow rates below 20 nL/min the relative peak intensities for the various peptides show a trend toward an equimolar response, which would be highly beneficial in phosphoproteomic analysis. As the technology to achieve liquid chromatography separation at flow rates below 20 nL/min is not readily available, a sheathless capillary electrophoresis-electrospray ionization-mass spectrometry (CE-ESI-MS) strategy based on the use of a neutrally coated separation capillary was used to develop an analytical strategy at flow rates as low as 6.6 nL/min. An in-line preconcentration technique, namely, transient isotachophoresis (t-ITP), to achieve efficient separation while using larger volume injections (37% of capillary thus 250 nL) was incorporated to achieve even greater sample concentration sensitivities. The developed t-ITP-ESI-MS strategy was then used in a direct comparison with nano-LC-MS for the detection of phosphopeptides. The comparison showed significantly improved phosphopeptide sensitivity in equal sample load and equal sample concentration conditions for CE-MS while providing complementary data to LC-MS, demonstrating the potential of ultra-low flow ESI for the analysis of phosphopeptides in liquid based separation techniques.


Analytical Chemistry | 2009

Gas chromatography/atmospheric pressure chemical ionization-time of flight mass spectrometry: analytical validation and applicability to metabolic profiling.

Alegría Carrasco-Pancorbo; Ekaterina Nevedomskaya; Thomas Arthen-Engeland; Thomas Zey; Gabriela Zurek; Carsten Baessmann; André M. Deelder; Oleg A. Mayboroda

Gas Chromatography (GC)-Mass Spectrometry (MS) with Atmospheric Pressure (AP) interface was introduced more than 30 years ago but never became a mainstream technique, mainly because of technical difficulties and cost of instrumentation. A recently introduced multipurpose AP source created the opportunity to reconsider the importance of AP ionization for GC. Here, we present an analytical evaluation of GC/APCI-MS showing the benefits of soft atmospheric pressure chemical ionization for GC in combination with a Time of Flight (TOF) mass analyzer. During this study, the complete analytical procedure was optimized and evaluated with respect to characteristic analytical parameters, such as repeatability, reproducibility, linearity, and detection limits. Limits of detection (LOD) were found within the range from 11.8 to 72.5 nM depending on the type of compound. The intraday and interday repeatability tests demonstrate relative standard deviations (RSDs) of peak areas between 0.7%-2.1% and 3.8%-6.4% correspondingly. Finally, we applied the developed method to the analysis of human cerebrospinal fluid (CSF) samples to check the potential of this new analytical combination for metabolic profiling.


Journal of Chromatography A | 2011

Gas chromatography-atmospheric pressure chemical ionization-time of flight mass spectrometry for profiling of phenolic compounds in extra virgin olive oil.

Rocío García-Villalba; Tiziana Pacchiarotta; Alegría Carrasco-Pancorbo; Antonio Segura-Carretero; Alberto Fernández-Gutiérrez; André M. Deelder; Oleg A. Mayboroda

A new analytical approach based on gas chromatography coupled to atmospheric pressure chemical ionization-time of flight mass spectrometry was evaluated for its applicability for the analysis of phenolic compounds from extra-virgin olive oil. Both chromatographic and MS parameters were optimized in order to improve the sensitivity and to maximize the number of phenolic compounds detected. We performed a complete analytical validation of the method with respect to its linearity, sensitivity, precision, accuracy and possible matrix effects. The LODs ranged from 0.13 to 1.05ppm for the different tested compounds depending on their properties. The RSDs for repeatability test did not exceed 6.07% and the accuracy ranged from 95.4% to 101.5%. To demonstrate the feasibility of our method for analysis of real samples, we analyzed the extracts of three different commercial extra-virgin olive oils. We have identified unequivocally a number of phenolic compounds and obtained quantitative information for 21 of them. In general, our results show that GC-APCI-TOF MS is a flexible platform which can be considered as an interesting tool for screening, structural assignment and quantitative determination of phenolic compounds from virgin olive oil.


Electrophoresis | 2008

Capillary electrophoresis-time of flight-mass spectrometry using noncovalently bilayer-coated capillaries for the analysis of amino acids in human urine

Rawi Ramautar; Oleg A. Mayboroda; Rico Derks; Cees van Nieuwkoop; Jaap T. van Dissel; Govert W. Somsen; André M. Deelder; Gerhardus J. de Jong

A capillary electrophoresis‐time of flight‐mass spectrometry (CE‐TOF‐MS) method for the analysis of amino acids in human urine was developed. Capillaries noncovalently coated with a bilayer of Polybrene (PB) and poly(vinyl sulfonate) (PVS) provided a considerable EOF at low pH, thus facilitating the fast separation of amino acids using a BGE of 1 M formic acid (pH 1.8). The PB–PVS coating proved to be very consistent yielding stable CE‐MS patterns of amino acids in urine with favorable migration time repeatability (RSDs <2%). The relatively low sample loading capacity of CE was circumvented by an in‐capillary preconcentration step based on pH‐mediated stacking allowing 100‐nL sample injection (i.e. ca. 4% of capillary volume). As a result, LODs for amino acids were down to 20 nM while achieving satisfactory separation efficiencies. Preliminary validation of the method with urine samples showed good linear responses for the amino acids (R2 >0.99), and RSDs for peak areas were <10%. Special attention was paid to the influence of matrix effects on the quantification of amino acids. The magnitude of ion suppression by the matrix was similar for different urine samples. The CE‐TOF‐MS method was used for the analysis of urine samples of patients with urinary tract infection (UTI). Concentrations of a subset of amino acids were determined and compared with concentrations in urine of healthy controls. Furthermore, partial least squares–discriminant analysis (PLS–DA) of the CE‐TOF‐MS dataset in the 50–450 m/z region showed a distinctive grouping of the UTI samples and the control samples. Examination of score and loadings plot revealed a number of compounds, including phenylalanine, to be responsible for grouping of the samples. Thus, the CE‐TOF‐MS method shows good potential for the screening of body fluids based on the analysis of endogenous low‐molecular weight metabolites such as amino acids and related compounds.


Analytical and Bioanalytical Chemistry | 2009

Alignment of capillary electrophoresis–mass spectrometry datasets using accurate mass information

Ekaterina Nevedomskaya; Rico Derks; André M. Deelder; Oleg A. Mayboroda; Magnus Palmblad

Capillary electrophoresis–mass spectrometry (CE–MS) is a powerful technique for the analysis of small soluble compounds in biological fluids. A major drawback of CE is the poor migration time reproducibility, which makes it difficult to combine data from different experiments and correctly assign compounds. A number of alignment algorithms have been developed but not all of them can cope with large and irregular time shifts between CE–MS runs. Here we present a genetic algorithm designed for alignment of CE–MS data using accurate mass information. The utility of the algorithm was demonstrated on real data, and the results were compared with one of the existing packages. The new algorithm showed a significant reduction of elution time variation in the aligned datasets. The importance of mass accuracy for the performance of the algorithm was also demonstrated by comparing alignments of datasets from a standard time-of-flight (TOF) instrument with those from the new ultrahigh resolution TOF maXis (Bruker Daltonics).


Journal of Proteome Research | 2010

CE-MS for metabolic profiling of volume-limited urine samples: application to accelerated aging TTD mice.

Ekaterina Nevedomskaya; Rawi Ramautar; Rico Derks; Irene Westbroek; Gerben Zondag; Ingrid van der Pluijm; André M. Deelder; Oleg A. Mayboroda

Metabolic profiling of biological samples is increasingly used to obtain more insight into the pathophysiology of diseases. For translational studies, biological samples from animal models are explored; however, the volume of these samples can be a limiting factor for metabolic profiling studies. For instance, only a few microliters of urine is often available from small animals like mice. Hence, there is a need for a tailor-made analytical method for metabolic profiling of volume-limited samples. In the present study, the feasibility of capillary electrophoresis time-of-flight mass spectrometry (CE-ToF-MS) for metabolic profiling of urine from mice is evaluated. Special attention is paid to the analytical workflow; that is, such aspects as sample preparation, analysis, and data treatment are discussed from the metabolomics viewpoint. We show that metabolites belonging to several chemical families can be analyzed in mouse urine with the CE-ToF-MS method using minimal sample pretreatment and an in-capillary preconcentration procedure. This exemplifies the advantages of CE-ToF-MS for metabolic profiling of volume-limited samples as loss of material is minimized. The feasibility of the CE-ToF-MS-based workflow for metabolic profiling is illustrated by the analysis of urine samples from wild-type as well as from TTD mutant mice, which are a model for the accelerated aging, with osteoporosis being one of the main hallmarks.


Molecular & Cellular Proteomics | 2010

Mass Spectrometric Identification of Aberrantly Glycosylated Human Apolipoprotein C-III Peptides in Urine from Schistosoma mansoni-infected Individuals

Crina I. A. Balog; Oleg A. Mayboroda; Manfred Wuhrer; Cornelis H. Hokke; André M. Deelder; Paul J. Hensbergen

Schistosomiasis is a parasitic infection caused by Schistosoma flatworms, prime examples of multicellular parasites that live in the mammalian host for many years. Glycoconjugates derived from the parasite have been shown to play an important role in many aspects of schistosomiasis, and some of them are present in the circulation of the host. The aim of this study was to identify novel glycoconjugates related to schistosomiasis in urine of Schistosoma mansoni-infected individuals using a combination of glycopeptide separation techniques and in-depth mass spectrometric analysis. Surprisingly, we characterized a heterogeneous population of novel aberrantly O-glycosylated peptides derived from the C terminus of human apolipoprotein C-III (apoC-III) in urine of S. mansoni-infected individuals that were not detected in urine of non-infected controls. The glycan composition of these glycopeptides is completely different from what has been described previously for apoC-III. Most importantly, they lack sialylation and display a high degree of fucosylation. This study exemplifies the potential of mass spectrometry for the identification and characterization of O-glycopeptides without prior knowledge of either the glycan or the peptide sequence. Furthermore, our results indicate for the first time that as a result of S. mansoni infection the glycosylation of a host protein is altered.

Collaboration


Dive into the Oleg A. Mayboroda's collaboration.

Top Co-Authors

Avatar

André M. Deelder

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Rico Derks

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Tiziana Pacchiarotta

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ekaterina Nevedomskaya

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Giera

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Paul J. Hensbergen

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

André M. Deelder

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge