Oleg Kim
University of Notre Dame
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Oleg Kim.
Biomaterials | 2014
Oleg Kim; Rustem I. Litvinov; John W. Weisel; Mark S. Alber
Fibrin is a protein polymer that forms a 3D filamentous network, a major structural component of protective physiological blood clots as well as life threatening pathological thrombi. It plays an important role in wound healing, tissue regeneration and is widely employed in surgery as a sealant and in tissue engineering as a scaffold. The goal of this study was to establish correlations between structural changes and mechanical responses of fibrin networks exposed to compressive loads. Rheological measurements revealed nonlinear changes of fibrin network viscoelastic properties under dynamic compression, resulting in network softening followed by its dramatic hardening. Repeated compression/decompression enhanced fibrin clot stiffening. Combining fibrin network rheology with simultaneous confocal microscopy provided direct evidence of structural modulations underlying nonlinear viscoelasticity of compressed fibrin networks. Fibrin clot softening in response to compression strongly correlated with fiber buckling and bending, while hardening was associated with fibrin network densification. Our results suggest a complex interplay of entropic and enthalpic mechanisms accompanying structural changes and accounting for the nonlinear mechanical response in fibrin networks undergoing compressive deformations. These findings provide new insight into the fibrin clot structural mechanics and can be useful for designing fibrin-based biomaterials with modulated viscoelastic properties.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Kamlesh Gupta; Chunlei Li; Aranda Duan; Emily O. Alberico; Oleg Kim; Mark S. Alber; Holly V. Goodson
Significance The microtubule (MT) cytoskeleton is a dynamic polymer network that plays a crucial role in cell function and disease. MT assembly and dynamics are precisely controlled; a key regulator is the MT destabilizer known as stathmin. Stathmin’s mechanism of action remains controversial: one well-supported model is that it reduces polymer indirectly by sequestering MT subunits; the alternative is that it acts directly on MTs by an as yet unknown mechanism. We provide a resolution to this debate by presenting experimental evidence that stathmin can act directly on MTs and does so by binding and destabilizing exposed protofilaments. Computer simulations performed in parallel suggest that both the direct and sequestering activities are likely to be significant in a cellular context. Regulation of microtubule dynamic instability is crucial for cellular processes, ranging from mitosis to membrane transport. Stathmin (also known as oncoprotein 18/Op18) is a prominent microtubule destabilizer that acts preferentially on microtubule minus ends. Stathmin has been studied intensively because of its association with multiple types of cancer, but its mechanism of action remains controversial. Two models have been proposed. One model is that stathmin promotes microtubule catastrophe indirectly, and does so by sequestering tubulin; the other holds that stathmin alters microtubule dynamics by directly destabilizing growing microtubules. Stathmin’s sequestration activity is well established, but the mechanism of any direct action is mysterious because stathmin binds to microtubules very weakly. To address these issues, we have studied interactions between stathmin and varied tubulin polymers. We show that stathmin binds tightly to Dolastatin-10 tubulin rings, which mimic curved tubulin protofilaments, and that stathmin depolymerizes stabilized protofilament-rich polymers. These observations lead us to propose that stathmin promotes catastrophe by binding to and acting upon protofilaments exposed at the tips of growing microtubules. Moreover, we suggest that stathmins minus-end preference results from interactions between stathmins N terminus and the surface of α-tubulin that is exposed only at the minus end. Using computational modeling of microtubule dynamics, we show that these mechanisms could account for stathmins observed activities in vitro, but that both the direct and sequestering activities are likely to be relevant in a cellular context. Taken together, our results suggest that stathmin can promote catastrophe by direct action on protofilament structure and interactions.
PLOS Computational Biology | 2013
Oleg Kim; Zhiliang Xu; Elliot D. Rosen; Mark S. Alber
Thromboembolic disease is a leading cause of morbidity and mortality worldwide. In the last several years there have been a number of studies attempting to identify mechanisms that stop thrombus growth. This paper identifies a novel mechanism related to formation of a fibrin cap. In particular, protein transport through a fibrin network, an important component of a thrombus, was studied by integrating experiments with model simulations. The network permeability and the protein diffusivity were shown to be important factors determining the transport of proteins through the fibrin network. Our previous in vivo studies in mice have shown that stabilized non-occluding thrombi are covered by a fibrin network (‘fibrin cap’). Model simulations, calibrated using experiments in microfluidic devices and accounting for the permeable structure of the fibrin cap, demonstrated that thrombin generated inside the thrombus was washed downstream through the fibrin network, thus limiting exposure of platelets on the thrombus surface to thrombin. Moreover, by restricting the approach of resting platelets in the flowing blood to the thrombus core, the fibrin cap impaired platelets from reaching regions of high thrombin concentration necessary for platelet activation and limited thrombus growth. The formation of a fibrin cap prevents small thrombi that frequently develop in the absence of major injury in the 60000 km of vessels in the body from developing into life threatening events.
Philosophical Transactions of the Royal Society A | 2014
Ziheng Wu; Zhiliang Xu; Oleg Kim; Mark S. Alber
When a blood vessel ruptures or gets inflamed, the human body responds by rapidly forming a clot to restrict the loss of blood. Platelets aggregation at the injury site of the blood vessel occurring via platelet–platelet adhesion, tethering and rolling on the injured endothelium is a critical initial step in blood clot formation. A novel three-dimensional multi-scale model is introduced and used in this paper to simulate receptor-mediated adhesion of deformable platelets at the site of vascular injury under different shear rates of blood flow. The novelty of the model is based on a new approach of coupling submodels at three biological scales crucial for the early clot formation: novel hybrid cell membrane submodel to represent physiological elastic properties of a platelet, stochastic receptor–ligand binding submodel to describe cell adhesion kinetics and lattice Boltzmann submodel for simulating blood flow. The model implementation on the GPU cluster significantly improved simulation performance. Predictive model simulations revealed that platelet deformation, interactions between platelets in the vicinity of the vessel wall as well as the number of functional GPIbα platelet receptors played significant roles in platelet adhesion to the injury site. Variation of the number of functional GPIbα platelet receptors as well as changes of platelet stiffness can represent effects of specific drugs reducing or enhancing platelet activity. Therefore, predictive simulations can improve the search for new drug targets and help to make treatment of thrombosis patient-specific.
Wiley Interdisciplinary Reviews: Systems Biology and Medicine | 2012
Zhiliang Xu; Oleg Kim; Malgorzata M. Kamocka; Elliot D. Rosen; Mark S. Alber
To restrict the loss of blood follow from the rupture of blood vessels, the human body rapidly forms a clot consisting of platelets and fibrin. However, to prevent pathological clotting within vessels as a result of vessel damage, the response must be regulated. Clots forming within vessels (thrombi) can restrict the flow of blood causing damage to tissues in the flow field. Additionally, fragments dissociating from the primary thrombus (emboli) may lodge and clog vessels in the brain (causing ischemic stroke) or lungs (resulting in pulmonary embolism). Pathologies related to the obstruction of blood flow through the vasculature are the major cause of mortality in the United States. Venous thromboembolic disease alone accounts for 900,000 hospitalizations and 300,000 deaths per year and the incidence will increase as the population ages (Wakefield et al. J Vasc Surg 2009, 49:1620–1623). Thus, understanding the interplay between the many processes involved in thrombus development is of significant biomedical value. In this article, we first review computational models of important subprocesses of hemostasis/thrombosis including coagulation reactions, platelet activation, and fibrin assembly, respectively. We then describe several multiscale models integrating these subprocesses to simulate temporal and spatial development of thrombi. The development of validated computational models and predictive simulations will enable one to explore how the variation of multiple hemostatic factors affects thrombotic risk providing an important new tool for thrombosis research. WIREs Syst Biol Med 2012 doi: 10.1002/wsbm.1160
Biophysical Journal | 2012
Huijing Du; Zhiliang Xu; Morgen E. Anyan; Oleg Kim; W. Matthew Leevy; Joshua D. Shrout; Mark S. Alber
This work describes a new, to our knowledge, strategy of efficient colonization and community development where bacteria substantially alter their physical environment. Many bacteria move in groups, in a mode described as swarming, to colonize surfaces and form biofilms to survive external stresses, including exposure to antibiotics. One such bacterium is Pseudomonas aeruginosa, which is an opportunistic pathogen responsible for both acute and persistent infections in susceptible individuals, as exampled by those for burn victims and people with cystic fibrosis. Pseudomonas aeruginosa often, but not always, forms branched tendril patterns during swarming; this phenomena occurs only when bacteria produce rhamnolipid, which is regulated by population-dependent signaling called quorum sensing. The experimental results of this work show that P. aeruginosa cells propagate as high density waves that move symmetrically as rings within swarms toward the extending tendrils. Biologically justified cell-based multiscale model simulations suggest a mechanism of wave propagation as well as a branched tendril formation at the edge of the population that depends upon competition between the changing viscosity of the bacterial liquid suspension and the liquid film boundary expansion caused by Marangoni forces. Therefore, P. aeruginosa efficiently colonizes surfaces by controlling the physical forces responsible for expansion of thin liquid film and by propagating toward the tendril tips. The model predictions of wave speed and swarm expansion rate as well as cell alignment in tendrils were confirmed experimentally. The study results suggest that P. aeruginosa responds to environmental cues on a very short timescale by actively exploiting local physical phenomena to develop communities and efficiently colonize new surfaces.
Cancers | 2017
Yuliya Klymenko; Oleg Kim; M. Stack
Unlike most epithelial malignancies which metastasize hematogenously, metastasis of epithelial ovarian cancer (EOC) occurs primarily via transcoelomic dissemination, characterized by exfoliation of cells from the primary tumor, avoidance of detachment-induced cell death (anoikis), movement throughout the peritoneal cavity as individual cells and multi-cellular aggregates (MCAs), adhesion to and disruption of the mesothelial lining of the peritoneum, and submesothelial matrix anchoring and proliferation to generate widely disseminated metastases. This exceptional microenvironment is highly permissive for phenotypic plasticity, enabling mesenchymal-to-epithelial (MET) and epithelial-to-mesenchymal (EMT) transitions. In this review, we summarize current knowledge on EOC heterogeneity in an EMT context, outline major regulators of EMT in ovarian cancer, address controversies in EMT and EOC chemoresistance, and highlight computational modeling approaches toward understanding EMT/MET in EOC.
Biomechanics and Modeling in Mechanobiology | 2016
Oleg Kim; Xiaojun Liang; Rustem I. Litvinov; John W. Weisel; Mark S. Alber; Prashant K. Purohit
The rheological properties of fibrin networks have been of long-standing interest. As such there is a wealth of studies of their shear and tensile responses, but their compressive behavior remains unexplored. Here, by characterization of the network structure with synchronous measurement of the fibrin storage and loss moduli at increasing degrees of compression, we show that the compressive behavior of fibrin networks is similar to that of cellular solids. A nonlinear stress–strain response of fibrin consists of three regimes: (1) an initial linear regime, in which most fibers are straight, (2) a plateau regime, in which more and more fibers buckle and collapse, and (3) a markedly nonlinear regime, in which network densification occurs by bending of buckled fibers and inter-fiber contacts. Importantly, the spatially non-uniform network deformation included formation of a moving “compression front” along the axis of strain, which segregated the fibrin network into compartments with different fiber densities and structure. The Young’s modulus of the linear phase depends quadratically on the fibrin volume fraction while that in the densified phase depends cubically on it. The viscoelastic plateau regime corresponds to a mixture of these two phases in which the fractions of the two phases change during compression. We model this regime using a continuum theory of phase transitions and analytically predict the storage and loss moduli which are in good agreement with the experimental data. Our work shows that fibrin networks are a member of a broad class of natural cellular materials which includes cancellous bone, wood and cork.
Physiological Measurement | 2012
Oleg Kim; John W. McMurdy; Collin Lines; Susan J. Duffy; Gregory P. Crawford; Mark S. Alber
A stochastic photon transport model in multilayer skin tissue combined with reflectance spectroscopy measurements is used to study normal and bruised skins. The model is shown to provide a very good approximation to both normal and bruised real skin tissues by comparing experimental and simulated reflectance spectra. The sensitivity analysis of the skin reflectance spectrum to variations of skin layer thicknesses, blood oxygenation parameter and concentrations of main chromophores is performed to optimize model parameters. The reflectance spectrum of a developed bruise in a healthy adult is simulated, and the concentrations of bilirubin, blood volume fraction and blood oxygenation parameter are determined for different times as the bruise progresses. It is shown that bilirubin and blood volume fraction reach their peak values at 80 and 55 h after contusion, respectively, and the oxygenation parameter is lower than its normal value during 80 h after contusion occurred. The obtained time correlations of chromophore concentrations in developing contusions are shown to be consistent with previous studies. The developed model uses a detailed seven-layer skin approximation for contusion and allows one to obtain more biologically relevant results than those obtained with previous models using one- to three-layer skin approximations. A combination of modeling with spectroscopy measurements provides a new tool for detailed biomedical studies of human skin tissue and for age determination of contusions.
computer based medical systems | 2014
Jianxu Chen; Oleg Kim; Rustem I. Litvinov; John W. Weisel; Mark S. Alber; Danny Z. Chen
Fibrin networks, formed during blood clotting, have a large and complicated structure and play a crucial role in regulating blood clot growth. Identifying and analyzing the 3D topological structure of fibrin networks using fluorescence confocal microscopy images is challenging due to their complex anatomy, and known automated methods do not seem to work well. In this paper, we present a two-stage approach for identifying the topological structure of fibrin networks in 3D confocal microscopy images. The first stage segments fibrin networks using a new Indicator-Guided Adaptive Thresholding (IGAT) algorithm. The second stage extracts, prunes, and analyzes the skeleton of fibrin networks in order to identify their topological structure. A new approach based on orientation analysis is applied to refine the extracted topological structure. Evaluation on 3D confocal microscopy images demonstrates that our approach is not sensitive to parameter selection and outperforms the known method, reducing the false positive rate for detecting branch points by 24% and reducing the false negative rate for detecting fiber segments by 15%.