Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Oleg Museyko is active.

Publication


Featured researches published by Oleg Museyko.


Rheumatology | 2014

Segmentation and quantification of bone erosions in high-resolution peripheral quantitative computed tomography datasets of the metacarpophalangeal joints of patients with rheumatoid arthritis

Dominique Töpfer; Stephanie Finzel; Oleg Museyko; Georg Schett; Klaus Engelke

OBJECTIVE To develop a precise three-dimensional (3D) segmentation technique for bone erosions in high-resolution peripheral quantitative CT (HR-pQCT) datasets to measure their volume, surface area and shape parameters. Assessment of bone erosions in patients with RA is important for diagnosis and evaluation of treatment efficacy. HR-pQCT allows quantifying periarticular bone loss in arthritis. METHODS HR-pQCT scans with a spatial resolution of about 120 µm of the second to fourth metacarpophalangeal joints were acquired in patients with RA. Erosions were identified by placing a seed point in each of them. After applying 3D segmentation, the volume, surface area and sphericity of erosions were calculated. Results were compared with an approximation method using manual measurements. Intra- and interoperator precision analysis was performed for both the 3D segmentation and the manual technique. RESULTS Forty-three erosions were assessed in 18 datasets. Intra- and interoperator precisions (RMSCV/RMSSD) for erosion volume were 5.66%/0.49 mm(3) and 7.76%/0.76 mm(3), respectively. The correlation between manual measurements and their simulation using segmentation volumes was r = 0.87. Precision errors for the manual method were 15.39% and 0.36 mm(3), respectively. CONCLUSION We developed a new precise 3D segmentation technique for quantification of bone erosions in HR-pQCT datasets that correlates to the volume, shape and surface area of the erosion. The technique allows fast and effective measurement of the erosion size and could therefore be helpful for rapid and quantitative assessment of erosion size.


Journal of Biomechanics | 2014

Finite element analyses of human vertebral bodies embedded in polymethylmethalcrylate or loaded via the hyperelastic intervertebral disc models provide equivalent predictions of experimental strength

Yongtao Lu; Ghislain Bernard Maquer; Oleg Museyko; Klaus Püschel; Klaus Engelke; Philippe Zysset; Michael M. Morlock; Gerd Huber

Quantitative computer tomography (QCT)-based finite element (FE) models of vertebral body provide better prediction of vertebral strength than dual energy X-ray absorptiometry. However, most models were validated against compression of vertebral bodies with endplates embedded in polymethylmethalcrylate (PMMA). Yet, loading being as important as bone density, the absence of intervertebral disc (IVD) affects the strength. Accordingly, the aim was to assess the strength predictions of the classic FE models (vertebral body embedded) against the in vitro and in silico strengths of vertebral bodies loaded via IVDs. High resolution peripheral QCT (HR-pQCT) were performed on 13 segments (T11/T12/L1). T11 and L1 were augmented with PMMA and the samples were tested under a 4° wedge compression until failure of T12. Specimen-specific model was generated for each T12 from the HR-pQCT data. Two FE sets were created: FE-PMMA refers to the classical vertebral body embedded model under axial compression; FE-IVD to their loading via hyperelastic IVD model under the wedge compression as conducted experimentally. Results showed that FE-PMMA models overestimated the experimental strength and their strength prediction was satisfactory considering the different experimental set-up. On the other hand, the FE-IVD models did not prove significantly better (Exp/FE-PMMA: R²=0.68; Exp/FE-IVD: R²=0.71, p=0.84). In conclusion, FE-PMMA correlates well with in vitro strength of human vertebral bodies loaded via real IVDs and FE-IVD with hyperelastic IVDs do not significantly improve this correlation. Therefore, it seems not worth adding the IVDs to vertebral body models until fully validated patient-specific IVD models become available.


Radiology | 2016

Prediction of Hip Failure Load: In Vitro Study of 80 Femurs Using Three Imaging Methods and Finite Element Models—The European Fracture Study (EFFECT)

Pierre Pottecher; Klaus Engelke; Laure Duchemin; Oleg Museyko; Thomas Moser; David Mitton; Eric Vicaut; Judith Adams; Wafa Skalli; Jean Denis Laredo; Valérie Bousson

Purpose To evaluate the performance of three imaging methods (radiography, dual-energy x-ray absorptiometry [DXA], and quantitative computed tomography [CT]) and that of a numerical analysis with finite element modeling (FEM) in the prediction of failure load of the proximal femur and to identify the best densitometric or geometric predictors of hip failure load. Materials and Methods Institutional review board approval was obtained. A total of 40 pairs of excised cadaver femurs (mean patient age at time of death, 82 years ± 12 [standard deviation]) were examined with (a) radiography to measure geometric parameters (lengths, angles, and cortical thicknesses), (b) DXA (reference standard) to determine areal bone mineral densities (BMDs), and (c) quantitative CT with dedicated three-dimensional analysis software to determine volumetric BMDs and geometric parameters (neck axis length, cortical thicknesses, volumes, and moments of inertia), and (d) quantitative CT-based FEM to calculate a numerical value of failure load. The 80 femurs were fractured via mechanical testing, with random assignment of one femur from each pair to the single-limb stance configuration (hereafter, stance configuration) and assignment of the paired femur to the sideways fall configuration (hereafter, side configuration). Descriptive statistics, univariate correlations, and stepwise regression models were obtained for each imaging method and for FEM to enable us to predict failure load in both configurations. Results Statistics reported are for stance and side configurations, respectively. For radiography, the strongest correlation with mechanical failure load was obtained by using a geometric parameter combined with a cortical thickness (r(2) = 0.66, P < .001; r(2) = 0.65, P < .001). For DXA, the strongest correlation with mechanical failure load was obtained by using total BMD (r(2) = 0.73, P < .001) and trochanteric BMD (r(2) = 0.80, P < .001). For quantitative CT, in both configurations, the best model combined volumetric BMD and a moment of inertia (r(2) = 0.78, P < .001; r(2) = 0.85, P < .001). FEM explained 87% (P < .001) and 83% (P < .001) of bone strength, respectively. By combining (a) radiography and DXA and (b) quantitative CT and DXA, correlations with mechanical failure load increased to 0.82 (P < .001) and 0.84 (P < .001), respectively, for radiography and DXA and to 0.80 (P < .001) and 0.86 (P < .001) , respectively, for quantitative CT and DXA. Conclusion Quantitative CT-based FEM was the best method with which to predict the experimental failure load; however, combining quantitative CT and DXA yielded a performance as good as that attained with FEM. The quantitative CT DXA combination may be easier to use in fracture prediction, provided standardized software is developed. These findings also highlight the major influence on femoral failure load, particularly in the trochanteric region, of a densitometric parameter combined with a geometric parameter. (©) RSNA, 2016 Online supplemental material is available for this article.


Bone | 2015

Comparison of proximal femur and vertebral body strength improvements in the FREEDOM trial using an alternative finite element methodology.

Philippe Zysset; Dieter H. Pahr; Klaus Engelke; Harry K. Genant; Michael R. McClung; David L. Kendler; Christopher Recknor; Michael Kinzl; Jakob Schwiedrzik; Oleg Museyko; Andrea Wang; Cesar Libanati

Denosumab reduced the incidence of new fractures in postmenopausal women with osteoporosis by 68% at the spine and 40% at the hip over 36 months compared with placebo in the FREEDOM study. This efficacy was supported by improvements from baseline in vertebral (18.2%) strength in axial compression and femoral (8.6%) strength in sideways fall configuration at 36 months, estimated in Newtons by an established voxel-based finite element (FE) methodology. Since FE analyses rely on the choice of meshes, material properties, and boundary conditions, the aim of this study was to independently confirm and compare the effects of denosumab on vertebral and femoral strength during the FREEDOM trial using an alternative smooth FE methodology. Unlike the previous FE study, effects on femoral strength in physiological stance configuration were also examined. QCT data for the proximal femur and two lumbar vertebrae were analyzed by smooth FE methodology at baseline, 12, 24, and 36 months for 51 treated (denosumab) and 47 control (placebo) subjects. QCT images were segmented and converted into smooth FE models to compute bone strength. L1 and L2 vertebral bodies were virtually loaded in axial compression and the proximal femora in both fall and stance configurations. Denosumab increased vertebral body strength by 10.8%, 14.0%, and 17.4% from baseline at 12, 24, and 36 months, respectively (p<0.0001). Denosumab also increased femoral strength in the fall configuration by 4.3%, 5.1%, and 7.2% from baseline at 12, 24, and 36 months, respectively (p<0.0001). Similar improvements were observed in the stance configuration with increases of 4.2%, 5.2%, and 5.2% from baseline (p≤0.0007). Differences between the increasing strengths with denosumab and the decreasing strengths with placebo were significant starting at 12 months (vertebral and femoral fall) or 24 months (femoral stance). Using an alternative smooth FE methodology, we confirmed the significant improvements in vertebral body and proximal femur strength previously observed with denosumab. Estimated increases in strength with denosumab and decreases with placebo were highly consistent between both FE techniques.


BMC Musculoskeletal Disorders | 2014

Characterization and quantification of angiogenesis in rheumatoid arthritis in a mouse model using μCT

Svitlana Gayetskyy; Oleg Museyko; Johannes Käßer; Andreas Hess; Georg Schett; Klaus Engelke

BackgroundAngiogenesis is an important pathophysiological process of chronic inflammation, especially in inflammatory arthritis. Quantitative measurement of changes in vascularization may improve the diagnosis and monitoring of arthritis. The aim of this work is the development of a 3D imaging and analysis framework for quantification of vascularization in experimental arthritis.MethodsHigh-resolution micro-computed tomography (μCT) was used to scan knee joints of arthritic human tumor necrosis factor transgenic (hTNFtg) mice and non-arthritic wild-type controls previously perfused with lead-containing contrast agent Microfil MV-122. Vessel segmentation was performed by combination of intensity-based (local adaptive thresholding) and form-based (multi-scale method) segmentation techniques. Four anatomically defined concentric spherical shells centered in the knee joint were used as analysis volumes of interest. Vessel density, density distribution as well as vessel thickness, surface, spacing and number were measured. Simulated digital vessel tree models were used for validation of the algorithms.ResultsHigh-resolution μCT allows the quantitative assessment of the vascular tree in the knee joint during arthritis. Segmentation and analysis were highly automated but occasionally required manual corrections of the vessel segmentation close to the bone surfaces. Vascularization was significantly increased in arthritic hTNFtg mice compared to wild type controls. Precision errors for the morphologic parameters were smaller than 3% and 6% for intra- and interoperator analysis, respectively. Accuracy errors for vessel thickness were around 20% for vessels larger than twice the resolution of the scanner.ConclusionsArthritis-induced changes of the vascular tree, including detailed and quantitative description of the number of vessel branches, length of vessel segments and the bifurcation angle, can be detected by contrast-enhanced high-resolution μCT.


IEEE Transactions on Biomedical Engineering | 2012

An Integrated Segmentation and Analysis Approach for QCT of the Knee to Determine Subchondral Bone Mineral Density and Texture

Peter Zerfass; T. Lowitz; Oleg Museyko; Valérie Bousson; Liess Laouisset; Willi A. Kalender; Jean Denis Laredo; Klaus Engelke

We have developed a new integrated approach for quantitative computed tomography of the knee in order to quantify bone mineral density (BMD) and subchondral bone structure. The present framework consists of image acquisition and reconstruction, 3-D segmentation, determination of anatomic coordinate systems, and reproducible positioning of analysis volumes of interest (VOI). Novel segmentation algorithms were developed to identify growth plates of the tibia and femur and the joint space with high reproducibility. Five different VOIs with varying distance to the articular surface are defined in the epiphysis. Each VOI is further subdivided into a medial and a lateral part. In each VOI, BMD is determined. In addition, a texture analysis is performed on a high-resolution computed tomography (CT) reconstruction of the same CT scan in order to quantify subchondral bone structure. Local and global homogeneity, as well as local and global anisotropy were measured in all VOIs. Overall short-term precision of the technique was evaluated using double measurements of 20 osteoarthritic cadaveric human knees. Precision errors for volume were about 2–3% in the femur and 3–5% in the tibia. Precision errors for BMD were about 1–2% lower. Homogeneity parameters showed precision errors up to about 2% and anisotropy parameters up to about 4%.


Rheumatology | 2015

Automated three-dimensional registration of high-resolution peripheral quantitative computed tomography data to quantify size and shape changes of arthritic bone erosions

Dominique Töpfer; Bastian Gerner; Stephanie Finzel; Sebastian Kraus; Oleg Museyko; Georg Schett; Klaus Engelke

OBJECTIVE To monitor size and shape changes of bone erosions and changes in BMD in the vicinity of the erosion and in the periarticular trabecular compartment of patients with RA using high-resolution peripheral quantitative CT (HR-pQCT) imaging and to compare an automated three-dimensional (3D) image processing technique with manual measurements of erosion width and depth. METHODS The shape of 40 bone erosions and composition of bone around the erosions were analysed in the MCP joints of 22 RA patients both manually and by semi-automated 3D image processing at two different time points. Periosteal segmentation was performed using volume growing and morphological operations. Image registration was applied for transfer of baseline segmentations to follow-up datasets. RESULTS Eight erosions decreased in size, 6 increased and 28 remained stable. Increasing erosions were more spherical and smaller at baseline compared with decreasing or stable erosions. BMD in the vicinity of shrinking erosions increased, while it decreased next to expanding erosions. There was moderate agreement in the determination of erosion volume between semi-automated and manual measurements, but agreement was poor when assessing changes in volume over time. CONCLUSION Longitudinal changes in erosion size and shape and of BMD in the vicinity of an erosion can be measured. BMD changes are associated with progression and regression of erosions. However, the semi-automated and manual approaches did not classify longitudinal changes of erosion volume in the same way. Further research is necessary to define the nature of these differences.


Arthritis Research & Therapy | 2017

Advanced Knee Structure Analysis (AKSA): a comparison of bone mineral density and trabecular texture measurements using computed tomography and high-resolution peripheral quantitative computed tomography of human knee cadavers

T. Lowitz; Oleg Museyko; Valérie Bousson; Christine Chappard; Liess Laouisset; Jean-Denis Laredo; Klaus Engelke

BackgroundA change of loading conditions in the knee causes changes in the subchondral bone and may be a cause of osteoarthritis (OA). However, quantification of trabecular architecture in vivo is difficult due to the limiting spatial resolution of the imaging equipment; one approach is the use of texture parameters. In previous studies, we have used digital models to simulate changes of subchondral bone architecture under OA progression. One major result was that, using computed tomography (CT) images, subchondral bone mineral density (BMD) in combination with anisotropy and global homogeneity could characterize this progression.The primary goal of this study was a comparison of BMD, entropy, anisotropy, variogram slope, and local and global inhomogeneity measurements between high-resolution peripheral quantitative CT (HR-pQCT) and CT using human cadaveric knees. The secondary goal was the verification of the spatial resolution dependence of texture parameters observed in the earlier simulations, two important prerequisites for the interpretation of in vivo measurements in OA patients.MethodThe applicability of texture analysis to characterize bone architecture in clinical CT examinations was investigated and compared to results obtained from HR-pQCT. Fifty-seven human knee cadavers (OA status unknown) were examined with both imaging modalities. Three-dimensional (3D) segmentation and registration processes, together with automatic positioning of 3D analysis volumes of interest (VOIs), ensured the measurement of BMD and texture parameters at the same anatomical locations in CT and HR-pQCT datasets.ResultsAccording to the calculation of dice ratios (>0.978), the accuracy of VOI locations between methods was excellent. Entropy, anisotropy, and global inhomogeneity showed significant and high linear correlation between both methods (0.68 < R2 < 1.00). The resolution dependence of these parameters simulated earlier was confirmed by the in vitro measurements.ConclusionThe high correlation of HR-pQCT- and CT-based measurements of entropy, global inhomogeneity, and anisotropy suggests interchangeability between devices regarding the quantification of texture. The agreement of the experimentally determined resolution dependence of global inhomogeneity and anisotropy with earlier simulations is an important milestone towards their use to quantify subchondral bone structure. However, an in vivo study is still required to establish their clinical relevance.


Computer Methods in Biomechanics and Biomedical Engineering | 2015

Registration of 2D histological sections with 3D micro-CT datasets from small animal vertebrae and tibiae

Oleg Museyko; Robert P. Marshall; Jing Lu; Andreas Hess; Georg Schett; Michael Amling; Willi A. Kalender; Klaus Engelke

The aim of this study was the registration of digitized thin 2D sections of mouse vertebrae and tibiae used for histomorphometry of trabecular bone structure into 3D micro computed tomography (μCT) datasets of the samples from which the sections were prepared. Intensity-based and segmentation-based registrations (SegRegs) of 2D sections and 3D μCT datasets were applied. As the 2D sections were deformed during their preparation, affine registration for the vertebrae was used instead of rigid registration. Tibiae sections were additionally cut on the distal end, which subsequently undergone more deformation so that elastic registration was necessary. The Jaccard distance was used as registration quality measure. The quality of intensity-based registrations and SegRegs was practically equal, although precision errors of the elastic registration of segmentation masks in tibiae were lower, while those in vertebrae were lower for the intensity-based registration. Results of SegReg significantly depended on the segmentation of the μCT datasets. Accuracy errors were reduced from approximately 64% to 42% when applying affine instead of rigid transformations for the vertebrae and from about 43% to 24% when using B-spline instead of rigid transformations for the tibiae. Accuracy errors can also be caused by the difference in spatial resolution between the thin sections (pixel size: 7.25 μm) and the μCT data (voxel size: 15 μm). In the vertebrae, average deformations amounted to a 6.7% shortening along the direction of sectioning and a 4% extension along the perpendicular direction corresponding to 0.13–0.17 mm. Maximum offsets in the mouse tibiae were 0.16 mm on average.


Annals of Biomedical Engineering | 2010

Binary Segmentation Masks Can Improve Intrasubject Registration Accuracy of Bone Structures in CT Images

Oleg Museyko; Fabian Eisa; Andreas Hess; Georg Schett; Willi A. Kalender; Klaus Engelke

Registration of bone structures is a common problem in medical research as well as in clinical applications. Intrasubject rigid 3D monomodality registration of segmented bone structures of CT images and multimodality registration of μMR and segmented μCT bone images were performed with the multiresolution intensity-based technique implemented in ITK. The registration results for binary volumes of interest (VOI) masks and for segmented gray value VOIs were compared. To determine the registration quality, in the monomodality case the sum of squared difference, the sum of absolute differences, and the normalized symmetric difference of binary masks and in the multimodality case Mattes mutual information were applied. The use of binary VOI masks was significantly superior to the use of gray value VOIs.

Collaboration


Dive into the Oleg Museyko's collaboration.

Top Co-Authors

Avatar

Klaus Engelke

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Willi A. Kalender

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Georg Schett

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Bastian Gerner

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

T. Lowitz

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Andreas Friedberger

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Andreas Hess

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Dominique Töpfer

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge